A problem with directional derivative in the theory of-galvanomagnetic effects

被引:0
作者
Gurevich, YG [1 ]
Kucherenko, VV [1 ]
de Areiano, ER [1 ]
机构
[1] CINVESTAV, IPM, Dept Matemat & Fis, Mexico City 14000, DF, Mexico
关键词
magnetoresistance; Laplace equation; directional derivative; Dirichlet problem; boundary-layer functions; magnetic field; estimate of the solution;
D O I
10.1007/BF02675357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an asymptotics of the solution the Laplace equation in it "long" rectangle with the directional derivative given on its "long sides" and Dirichlet data on its "short sides." By using the asymptotics, we calculate one of the integral characteristics, namely, the magnetoresistance. We obtain new formulas for the low-magnetic field magnetoresistance.
引用
收藏
页码:436 / 446
页数:9
相关论文
共 10 条
[1]  
AKHIEZER IT, 1993, SEMICONDUCTORS+, V27, P349
[2]  
[Anonymous], MAT SB
[3]  
Anselm A. I., 1978, INTRO SEMICONDUCTOR
[4]  
BEER AC, 1963, GALVANOMAGNETIC EFFE
[5]   New mechanism of magnetoresistance in bulk semiconductors: Boundary condition effects [J].
delaCruz, GG ;
Gurevich, YG ;
Prosentsov, VV .
SOLID STATE COMMUNICATIONS, 1996, 97 (12) :1069-1072
[6]  
GANTMAKHER VF, 1984, CHARGE CARRIER SCATT
[7]  
Kondratiev V., 1967, T MOSKOV MATEM OBSHC, V16, P209
[8]  
Lavrent'ev M. A., 1987, METHODS THEORY COMPL
[9]  
LIPPMANN HJ, 1958, Z NATURFORSCH PT A, V13, P462
[10]   SOLUTION OF THE FIELD PROBLEM OF THE GERMANIUM GYRATOR [J].
WICK, RF .
JOURNAL OF APPLIED PHYSICS, 1954, 25 (06) :741-756