Engineering Ni/SiO2 catalysts for enhanced CO2 methanation

被引:125
作者
Ye, Run-Ping [1 ]
Liao, Lin [1 ,9 ]
Reina, Tomas Ramirez [2 ,3 ]
Liu, Jiaxu [4 ,5 ]
Chevella, Durgaiah [1 ]
Jin, Yonggang [6 ]
Fan, Maohong [7 ,8 ]
Liu, Jian [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Liaoning, Peoples R China
[2] Univ Surrey, DICP Surrey Joint Ctr Future Mat, Dept Chem & Proc Engn, Guildford GU2 7XH, Surrey, England
[3] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[4] Dalian Univ Technol, State Key Lab Fine Chem, 2 Linggong Rd, Dalian 116024, Peoples R China
[5] Dalian Univ Technol, Sch Chem Engn, 2 Linggong Rd, Dalian 116024, Peoples R China
[6] CSIRO Mineral Resources, 1 Technol Court, Pullenvale, Qld 4069, Australia
[7] Univ Wyoming, Coll Engn & Appl Sci, Laramie, WY 82071 USA
[8] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[9] Liaoning Normal Univ, Sch Chem & Chem Engn, Inst Chem Functionalized Mat, Dalian 116029, Peoples R China
基金
中国博士后科学基金;
关键词
CO2; methanation; Methane; Ni-MOF; Porous materials; Sol-gel process; METAL-ORGANIC FRAMEWORKS; NI NANOPARTICLES; CARBON-DIOXIDE; HYDROGENATION; PHYLLOSILICATE; CONVERSION; PROMOTERS; STRATEGY; IRON;
D O I
10.1016/j.fuel.2020.119151
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The CO2 methanation is an important process in coal-to-gas, power-to-gas and CO2 removal for spacecraft. Recently, metal-organic framework (MOF) derivatives have been demonstrated as high-performance catalysts for CO2 upgrading processes. However, due to the high costs and low stability of MOF derivatives, it still remains challenge for the development of alternative synthesis methods avoiding MOF precursors. In this work, we present the sol-gel method for loading Ni-MOF to silica support in two-steps. Upon modifying the procedure, a more simplified one-step sol-gel method has been developed. Furthermore, the obtained Ni/SiO2 catalyst still exhibits great catalytic performance with a CO2 conversion of 77.2% and considerable CH4 selectivity of similar to 100% during a stability test for 52 h under a low temperature of 310 degrees C and high GHSV of 20,000 mL.g(-1).h(-1). Therefore, this work provides a ground-breaking direct strategy for loading MOF derived catalysts, and might shed a light on the preparation of highly dispersed Ni/SiO2 catalyst.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Developing Ni-based honeycomb-type catalysts using different binary oxide-supported species for synergistically enhanced CO2 methanation activity [J].
Ahn, Jeong Yoon ;
Chang, Soon Woong ;
Lee, Sang Moon ;
Kim, Sung Su ;
Chung, Woo Jin ;
Lee, Jung Chul ;
Cho, Yong Joo ;
Shin, Kyung Sook ;
Moon, Dea Hyun ;
Dinh Duc Nguyen .
FUEL, 2019, 250 :277-284
[2]   A Heterogeneous Carbon Nitride-Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation [J].
Barrio, Jesus ;
Mateo, Diego ;
Albero, Josep ;
Garcia, Hermenegildo ;
Shalom, Menny .
ADVANCED ENERGY MATERIALS, 2019, 9 (44)
[3]   Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives [J].
Bavykina, Anastasiya ;
Kolobov, Nikita ;
Khan, Il Son ;
Bau, Jeremy A. ;
Ramirez, Adrian ;
Gascon, Jorge .
CHEMICAL REVIEWS, 2020, 120 (16) :8468-8535
[4]   A highly active and stable Ni-Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water-gas shift reaction [J].
Bian, Zhoufeng ;
Li, Ziwei ;
Ashok, Jangam ;
Kawi, Sibudjing .
CHEMICAL COMMUNICATIONS, 2015, 51 (91) :16324-16326
[5]   Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution [J].
Chen, Jingyu ;
Wang, Xu ;
Wu, Dakai ;
Zhang, Jianli ;
Ma, Qingxiang ;
Gao, Xinhua ;
Lai, Xiaoyong ;
Xia, Hongqiang ;
Fan, Subing ;
Zhao, Tian-Sheng .
FUEL, 2019, 239 :44-52
[6]   Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO2 to Methane [J].
Cored, Jorge ;
Garcia-Ortiz, Andrea ;
Iborra, Sara ;
Climent, Maria J. ;
Liu, Lichen ;
Chuang, Cheng-Hao ;
Chan, Ting-Shan ;
Escudero, Carlos ;
Concepcion, Patricia ;
Corma, Avelino .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (49) :19304-19311
[7]   Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J].
Das, Sonali ;
Perez-Ramirez, Javier ;
Gong, Jinlong ;
Dewangan, Nikita ;
Hidajat, Kus ;
Gates, Bruce C. ;
Kawi, Sibudjing .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (10) :2937-3004
[8]   Nickel catalysts supported on silica microspheres for CO2 methanation [J].
Gac, Wojciech ;
Zawadzki, Witold ;
Slowik, Grzegorz ;
Sienkiewicz, Andrzej ;
Kierys, Agnieszka .
MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 272 :79-91
[9]   A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas [J].
Gao, Jiajian ;
Wang, Yingli ;
Ping, Yuan ;
Hu, Dacheng ;
Xu, Guangwen ;
Gu, Fangna ;
Su, Fabing .
RSC ADVANCES, 2012, 2 (06) :2358-2368
[10]   One-Pot Hydrothermal Synthesis of Nitrogen Functionalized Carbonaceous Material Catalysts with Embedded Iron Nanoparticles for CO2 Hydrogenation [J].
Guo, Lisheng ;
Zhang, Peipei ;
Cui, Yu ;
Liu, Guangbo ;
Wu, Jinhu ;
Yang, Guohui ;
Yoneyama, Yoshiharu ;
Tsubaki, Noritatsu .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (09) :8331-8339