GLASS: a comprehensive database for experimentally validated GPCR-ligand associations
被引:92
作者:
Chan, Wallace K. B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Chan, Wallace K. B.
[1
]
Zhang, Hongjiu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Zhang, Hongjiu
[2
]
Yang, Jianyi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Yang, Jianyi
[2
]
Brender, Jeffrey R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Brender, Jeffrey R.
[2
]
Hur, Junguk
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Dakota, Sch Med & Hlth Sci, Dept Basic Sci, Grand Forks, ND 58203 USAUniv Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Hur, Junguk
[3
]
Ozgur, Arzucan
论文数: 0引用数: 0
h-index: 0
机构:
Bogazici Univ, Dept Comp Engn, Istanbul, TurkeyUniv Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Ozgur, Arzucan
[4
]
Zhang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Zhang, Yang
[1
,2
]
机构:
[1] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ N Dakota, Sch Med & Hlth Sci, Dept Basic Sci, Grand Forks, ND 58203 USA
Motivation: G protein-coupled receptors (GPCRs) are probably the most attractive drug target membrane proteins, which constitute nearly half of drug targets in the contemporary drug discovery industry. While the majority of drug discovery studies employ existing GPCR and ligand interactions to identify new compounds, there remains a shortage of specific databases with precisely annotated GPCR-ligand associations. Results: We have developed a new database, GLASS, which aims to provide a comprehensive, manually curated resource for experimentally validated GPCR-ligand associations. A new text-mining algorithm was proposed to collect GPCR-ligand interactions from the biomedical literature, which is then crosschecked with five primary pharmacological datasets, to enhance the coverage and accuracy of GPCR-ligand association data identifications. A special architecture has been designed to allow users for making homologous ligand search with flexible bioactivity parameters. The current database contains similar to 500 000 unique entries, of which the vast majority stems from ligand associations with rhodopsin- and secretin-like receptors. The GLASS database should find its most useful application in various in silico GPCR screening and functional annotation studies.