GLASS: a comprehensive database for experimentally validated GPCR-ligand associations

被引:92
作者
Chan, Wallace K. B. [1 ]
Zhang, Hongjiu [2 ]
Yang, Jianyi [2 ]
Brender, Jeffrey R. [2 ]
Hur, Junguk [3 ]
Ozgur, Arzucan [4 ]
Zhang, Yang [1 ,2 ]
机构
[1] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ N Dakota, Sch Med & Hlth Sci, Dept Basic Sci, Grand Forks, ND 58203 USA
[4] Bogazici Univ, Dept Comp Engn, Istanbul, Turkey
关键词
PROTEIN-COUPLED RECEPTORS; SYSTEM; TOOLS;
D O I
10.1093/bioinformatics/btv302
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: G protein-coupled receptors (GPCRs) are probably the most attractive drug target membrane proteins, which constitute nearly half of drug targets in the contemporary drug discovery industry. While the majority of drug discovery studies employ existing GPCR and ligand interactions to identify new compounds, there remains a shortage of specific databases with precisely annotated GPCR-ligand associations. Results: We have developed a new database, GLASS, which aims to provide a comprehensive, manually curated resource for experimentally validated GPCR-ligand associations. A new text-mining algorithm was proposed to collect GPCR-ligand interactions from the biomedical literature, which is then crosschecked with five primary pharmacological datasets, to enhance the coverage and accuracy of GPCR-ligand association data identifications. A special architecture has been designed to allow users for making homologous ligand search with flexible bioactivity parameters. The current database contains similar to 500 000 unique entries, of which the vast majority stems from ligand associations with rhodopsin- and secretin-like receptors. The GLASS database should find its most useful application in various in silico GPCR screening and functional annotation studies.
引用
收藏
页码:3035 / 3042
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 2009, P WORKSHOP BIONLP
[2]   TinyGRAP database: a bioinformatics tool to mine G-protein-coupled receptor mutant data [J].
Beukers, MW ;
Kristiansen, K ;
Ijzerman, AP ;
Edvardsen, O .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1999, 20 (12) :475-477
[3]   JS']JSME: a free molecule editor in Java']JavaScript [J].
Bienfait, Bruno ;
Ertl, Peter .
JOURNAL OF CHEMINFORMATICS, 2013, 5
[4]   High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor [J].
Cherezov, Vadim ;
Rosenbaum, Daniel M. ;
Hanson, Michael A. ;
Rasmussen, Soren G. F. ;
Thian, Foon Sun ;
Kobilka, Tong Sun ;
Choi, Hee-Jung ;
Kuhn, Peter ;
Weis, William I. ;
Kobilka, Brian K. ;
Stevens, Raymond C. .
SCIENCE, 2007, 318 (5854) :1258-1265
[5]   Biopython']python: freely available Python']Python tools for computational molecular biology and bioinformatics [J].
Cock, Peter J. A. ;
Antao, Tiago ;
Chang, Jeffrey T. ;
Chapman, Brad A. ;
Cox, Cymon J. ;
Dalke, Andrew ;
Friedberg, Iddo ;
Hamelryck, Thomas ;
Kauff, Frank ;
Wilczynski, Bartek ;
de Hoon, Michiel J. L. .
BIOINFORMATICS, 2009, 25 (11) :1422-1423
[6]   G-protein-coupled receptors and cancer [J].
Dorsam, Robert T. ;
Gutkind, J. Silvio .
NATURE REVIEWS CANCER, 2007, 7 (02) :79-94
[7]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[8]   Ligand and Decoy Sets for Docking to G Protein-Coupled Receptors [J].
Gatica, Edgar A. ;
Cavasotto, Claudio N. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (01) :1-6
[9]   ChEMBL: a large-scale bioactivity database for drug discovery [J].
Gaulton, Anna ;
Bellis, Louisa J. ;
Bento, A. Patricia ;
Chambers, Jon ;
Davies, Mark ;
Hersey, Anne ;
Light, Yvonne ;
McGlinchey, Shaun ;
Michalovich, David ;
Al-Lazikani, Bissan ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D1100-D1107
[10]  
Gray K.A., 2014, NUCLEIC ACIDS RES