Performance and stability of a liquid anode high-temperature metal-air battery

被引:17
作者
Otaegui, L. [1 ]
Rodriguez-Martinez, L. M. [2 ]
Wang, L. [1 ]
Laresgoiti, A. [2 ]
Tsukamoto, H. [3 ]
Han, M. H. [1 ]
Tsai, C-L [1 ]
Laresgoiti, I. [2 ]
Lopez, C. M. [1 ]
Rojo, T. [1 ]
机构
[1] CIC Energigune, Minano 01510, Alava, Spain
[2] IK4 Ikerlan, Energy Business Unit, Minano 01510, Alava, Spain
[3] CONNEXX, La Canada Flintridge, CA 91011 USA
关键词
Metal-air battery; Molten tin; Liquid metal anode; Oxygen ion conductive electrolyte; Energy storage; FUEL-CELLS; TIN ANODE;
D O I
10.1016/j.jpowsour.2013.09.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A High-Temperature Metal Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 degrees C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which' should theoretically approach 903 mAh g(-1). Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 degrees C, showing highly promising results of stability, reversibility and cyclability. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:749 / 755
页数:7
相关论文
共 19 条
[1]   Basic properties of a liquid tin anode solid oxide fuel cell [J].
Abernathy, Harry ;
Gemmen, Randall ;
Gerdes, Kirk ;
Koslowske, Mark ;
Tao, Thomas .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4564-4572
[2]  
Ellingham H. J. T., 1944, Chem. Ind, V63, P125, DOI [10.1002/jctb.5000630501, DOI 10.1002/JCTB.5000630501]
[3]  
GOLTSOVA EI, 1966, HIGH TEMP+, V4, P348
[4]   A Comparison of Molten Sn and Bi for Solid Oxide Fuel Cell Anodes [J].
Jayakumar, A. ;
Lee, S. ;
Hornes, A. ;
Vohs, J. M. ;
Gorte, R. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) :B365-B369
[5]   ADVANCED CELL DEVELOPMENT FOR INCREASED DIRECT JP-8 PERFORMANCE IN THE LIQUID TIN ANODE SOFC [J].
Koslowske, M. T. ;
McPhee, W. A. ;
Bateman, L. S. ;
Slaney, M. J. ;
Bentley, J. ;
Tao, T. T. .
ADVANCES IN SOLID OXIDE FUEL CELLS V, 2010, 30 (04) :27-35
[6]   Insights into the Role of Interphasial Morphology on the Electrochemical Performance of Lithium Electrodes [J].
Lopez, Carmen M. ;
Vaughey, John T. ;
Dees, Dennis W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :A873-A886
[7]   Morphological Transitions on Lithium Metal Anodes [J].
Lopez, Carmen M. ;
Vaughey, John T. ;
Dees, Dennis W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (09) :A726-A729
[8]   LIQUID TEMPERATURE RANGE, DENSITY, AND CRITICAL CONSTANTS OF MAGNESIUM [J].
MCGONIGAL, PJ ;
GROSSE, AV ;
KIRSHENBAUM, AD .
JOURNAL OF PHYSICAL CHEMISTRY, 1962, 66 (04) :737-&
[9]   Demonstration of a Liquid-Tin Anode Solid-Oxide Fuel Cell (LTA-SOFC) Operating from Biodiesel Fuel [J].
McPhee, William A. G. ;
Boucher, Matthew ;
Stuart, James ;
Parnas, Richard S. ;
Koslowske, Mark ;
Tao, Thomas ;
Wilhite, Benjamin A. .
ENERGY & FUELS, 2009, 23 (10) :5036-5041
[10]  
Rackey S., 2003, International Patent Application, Patent No. [WO 03/001617, 03001617]