MS-BID: a Java']Java package for label-free LC-MS-based comparative proteomic analysis

被引:7
作者
Hwang, Daehee [1 ,2 ,3 ]
Zhang, Ning [1 ]
Lee, Hookeun [1 ,4 ]
Yi, Eugene [1 ]
Zhang, Hui [1 ]
Lee, Inyoul Y. [1 ]
Hood, Leroy [1 ]
Aebersold, Ruedi [1 ,5 ,6 ]
机构
[1] Inst Syst Biol, Seattle, WA 98103 USA
[2] I BIO Program, Pohang 790784, South Korea
[3] Pohang Inst Sci & Technol, Dept Chem Engn, Pohang 790784, South Korea
[4] Gachon Univ Med & Sci, LCDI, Inchon, South Korea
[5] ETH, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[6] Univ Zurich, Fac Nat Sci, Zurich, Switzerland
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btn491
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
MS-BID (MS Biomarker Discovery Platform) is an integrative computational pipeline for biomarker discovery using LC-MS-based comparative proteomic analysis. This platform consists of several computational tools for: (i) detecting peptides in the collected patterns; (ii) matching detected peptides across a number of LC-MS datasets and (iii) selecting discriminatory peptides between classes of samples.
引用
收藏
页码:2641 / 2642
页数:2
相关论文
共 50 条
  • [41] msCompare: A Framework for Quantitative Analysis of Label-free LC-MS Data for Comparative Candidate Biomarker Studies
    Hoekman, Berend
    Breitling, Rainer
    Suits, Frank
    Bischoff, Rainer
    Horvatovich, Peter
    MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (06)
  • [42] Label-free LC–MS/MS proteomics analyses reveal proteomic changes in oxidative stress and the SOD antioxidant strategy in TM cells
    Qian Li
    Liyu Zhang
    Yuxin Xu
    Clinical Proteomics, 2022, 19
  • [43] Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor
    Chen, Xun
    Stout, Steven
    Mueller, Uwe
    Boykow, George
    Visconti, Richard
    Siliphaivanh, Phieng
    Spencer, Kerrie
    Presland, Jeremy
    Kavana, Michael
    Basso, Andrea D.
    McLaren, David G.
    Myers, Robert W.
    SLAS DISCOVERY, 2017, 22 (09) : 1131 - 1141
  • [44] Generic workflow for quality assessment of quantitative label-free LC-MS analysis
    Sandin, Marianne
    Krogh, Morten
    Hansson, Karin
    Levander, Fredrik
    PROTEOMICS, 2011, 11 (06) : 1114 - 1124
  • [45] metID: an R package for automatable compound annotation for LC-MS-based data
    Shen, Xiaotao
    Wu, Si
    Liang, Liang
    Chen, Songjie
    Contrepois, Kevin
    Zhu, Zheng-Jiang
    Snyder, Michael
    BIOINFORMATICS, 2022, 38 (02) : 568 - 569
  • [46] Proteomic Analysis of the Secretory Proteins from Phytophthora infestans under Nitrogen Deficiency using Label-free LC-MS
    Yu, Ping
    Dong, Chao
    Yao, Chunxin
    Ding, Yumei
    Zhou, Xiaogang
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2018, 20 (10) : 2363 - 2370
  • [47] Chip-LC-MS for label-free profiling of human serum
    Horvatovich, Peter
    Govorukhina, Natalia .
    Reijmers, Theo H.
    van der Zee, Ate G. J.
    Suits, Frank
    Bischoff, Rainer
    ELECTROPHORESIS, 2007, 28 (23) : 4493 - 4505
  • [48] Label-free LC-MS/MS proteomics analyses reveal proteomic changes in oxidative stress and the SOD antioxidant strategy in TM cells
    Li, Qian
    Zhang, Liyu
    Xu, Yuxin
    CLINICAL PROTEOMICS, 2022, 19 (01)
  • [49] Tips and tricks for LC-MS-based metabolomics and lipidomics analysis
    Rakusanova, Stanislava
    Cajka, Tomas
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2024, 180
  • [50] Identification of protein biomarkers and signaling pathways associated with prostate cancer radioresistance using label-free LC-MS/MS proteomic approach
    Lei Chang
    Jie Ni
    Julia Beretov
    Valerie C. Wasinger
    Jingli Hao
    Joseph Bucci
    David Malouf
    David Gillatt
    Peter H. Graham
    Yong Li
    Scientific Reports, 7