MS-BID: a Java']Java package for label-free LC-MS-based comparative proteomic analysis

被引:7
|
作者
Hwang, Daehee [1 ,2 ,3 ]
Zhang, Ning [1 ]
Lee, Hookeun [1 ,4 ]
Yi, Eugene [1 ]
Zhang, Hui [1 ]
Lee, Inyoul Y. [1 ]
Hood, Leroy [1 ]
Aebersold, Ruedi [1 ,5 ,6 ]
机构
[1] Inst Syst Biol, Seattle, WA 98103 USA
[2] I BIO Program, Pohang 790784, South Korea
[3] Pohang Inst Sci & Technol, Dept Chem Engn, Pohang 790784, South Korea
[4] Gachon Univ Med & Sci, LCDI, Inchon, South Korea
[5] ETH, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[6] Univ Zurich, Fac Nat Sci, Zurich, Switzerland
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btn491
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
MS-BID (MS Biomarker Discovery Platform) is an integrative computational pipeline for biomarker discovery using LC-MS-based comparative proteomic analysis. This platform consists of several computational tools for: (i) detecting peptides in the collected patterns; (ii) matching detected peptides across a number of LC-MS datasets and (iii) selecting discriminatory peptides between classes of samples.
引用
收藏
页码:2641 / 2642
页数:2
相关论文
共 50 条
  • [31] Quantitative proteomic analysis of Huh-7 cells infected with Dengue virus by label-free LC-MS
    Pando-Robles, Victoria
    Oses-Prieto, Juan A.
    Rodriguez-Gandarilla, Myriam
    Meneses-Romero, Erika
    Burlingame, Alma L.
    Batista, Cesar V. F.
    JOURNAL OF PROTEOMICS, 2014, 111 : 16 - 29
  • [32] CSF biomarker discovery using label-free nano-LC-MS based proteomic profiling: Technical aspects
    Huang, Jeffrey T. -J.
    McKenna, Therese
    Hughes, Chris
    Leweke, F. Markus
    Schwarz, Emanuel
    Bahn, Sabine
    JOURNAL OF SEPARATION SCIENCE, 2007, 30 (02) : 214 - 225
  • [33] Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis
    Collins, Mahlon A.
    An, Jiyan
    Hood, Brian L.
    Conrads, Thomas P.
    Bowser, Robert P.
    JOURNAL OF PROTEOME RESEARCH, 2015, 14 (11) : 4486 - 4501
  • [34] Differential proteome analysis of hippocampus and temporal cortex using label-free based 2D-LC-MS/MS
    Liu, Xiaoyan
    Guo, Zhengguang
    Liu, Wei
    Sun, Wei
    Ma, Chao
    JOURNAL OF PROTEOMICS, 2017, 165 : 26 - 34
  • [35] Large-Scale Proteomic Analysis of Patients with Type 2 Diabetes Mellitus and Atherosclerosis Using a Label-Free LC-MS/MS Approach
    Surmen, Mustafa Gani
    Bozkaya, Tijen Alkan
    Ates, M. Sanser
    Surmen, Saime
    Cakici, Cagri
    Pence, Sadrettin
    Emekli, Nesrin
    EXPERIMED, 2023, 13 (01): : 26 - 38
  • [36] Label-free LC-MS/MS quantitative analysis of aqueous humor from keratoconic and normal eyes
    Soria, Javier
    Villarrubia, Alberto
    Merayo-Lloves, Jesus
    Elortza, Felix
    Azkargorta, Mikel
    Alvarez de Toledo, Juan
    Rodriguez-Agirretxe, Inaki
    Suarez, Tatiana
    Acera, Arantxa
    MOLECULAR VISION, 2015, 21 : 451 - 460
  • [37] Quantitative Proteomic Analysis of Duck Ovarian Follicles Infected with Duck Tembusu Virus by Label-Free LC-MS
    Han, Kaikai
    Zhao, Dongmin
    Liu, Yuzhuo
    Liu, Qingtao
    Huang, Xinmei
    Yang, Jing
    An, Fengjiao
    Lin, Yin
    FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [38] Label-free LC-MS/MS prtheomic analysis of the hemolymph of silkworm larvae infected with Beauveria bassiana
    Lu, Dingding
    Xu, Ping
    Hou, Chengxiang
    Gao, Kun
    Guo, Xijie
    JOURNAL OF INVERTEBRATE PATHOLOGY, 2019, 166
  • [39] aLFQ: an R-package for estimating absolute protein quantities from label-free LC-MS/MS proteomics data
    Rosenberger, George
    Ludwig, Christina
    Roest, Hannes L.
    Aebersold, Ruedi
    Malmstroem, Lars
    BIOINFORMATICS, 2014, 30 (17) : 2511 - 2513
  • [40] ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS-based metabolomics
    Silva, Ricardo R.
    Jourdan, Fabien
    Salvanha, Diego M.
    Letisse, Fabien
    Jamin, Emilien L.
    Guidetti-Gonzalez, Simone
    Labate, Carlos A.
    Vencio, Ricardo Z. N.
    BIOINFORMATICS, 2014, 30 (09) : 1336 - 1337