ALMOST PERIODIC SOLUTIONS TO STOCHASTIC EVOLUTION EQUATIONS ON BANACH SPACES

被引:7
作者
Crewe, P. [1 ]
机构
[1] Univ Oxford St Johns Coll, Oxford OX1 3JP, England
关键词
Stochastic differential equations; almost periodicity; R-boundedness; evolution family; gamma-radonifying operators; INTEGRATION;
D O I
10.1142/S021949371250027X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of almost periodic solutions to a class of abstract stochastic evolution equations on a Banach space E, d X (t) = (A(t) X (t) + F(t))dt + G(t)dW (t), t is an element of R, Both autonomous (A is a C-0-semigroup generator) and non-autonomous (A (t) satisfies conditions of Acquistapace-Terreni and generates a strongly continuous evolution family) cases are studied. Results are based on the theory of stochastic integration on Banach spaces of van Neerven and Weis and R-boundedness estimates for semigroups and evolution families due to Hytonen and Veraar. An example is given for a non-autonomous second order boundary value problem on a domain in R-d.
引用
收藏
页数:23
相关论文
共 21 条
[1]  
Acquistapace P., 1987, Rend. Semin. Mat. Univ. Padova, V78, P47, DOI [10.1016/0022-1236(85)90050-3, DOI 10.1016/0022-1236(85)90050-3]
[2]  
Acquistapace P., 1998, DIFFERENTIAL INTEGRA, V1, P433
[3]  
[Anonymous], 2000, GRAD TEXT M
[4]  
[Anonymous], 1995, ABSTRACT LINEAR THEO
[5]   Almost Periodicity of Parabolic Evolution Equations with Inhomogeneous Boundary Values [J].
Baroun, Mahmoud ;
Maniar, Lahcen ;
Schnaubelt, Roland .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 65 (02) :169-193
[7]   PERIODIC AND ALMOST-PERIODIC SOLUTIONS FOR SEMILINEAR STOCHASTIC-EQUATIONS [J].
DAPRATO, G ;
TUDOR, C .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1995, 13 (01) :13-33
[8]   R-Boundedness of Smooth Operator-Valued Functions [J].
Hytonen, Tuomas ;
Veraar, Mark .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (03) :373-402
[9]  
Kunze M., ARXIV11044258
[10]  
Lunardi A., 1999, Interpolation theory