Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus

被引:76
作者
Hirano, S. [1 ]
Matsumoto, N. [1 ]
Morita, M. [1 ]
Sasaki, K. [1 ]
Ohmura, N. [1 ]
机构
[1] Cent Res Inst Elect Power Ind, Environm Sci Res Lab, Biotechnol Sect, Abiko, Chiba, Japan
关键词
bioproducts; biotechnology; metabolism; microbial physiology; ESCHERICHIA-COLI; HYDROGENASE; GROWTH;
D O I
10.1111/lam.12059
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To investigate the precise effect of the redox potential on the methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus by using an electrochemical redox controlling system without adding oxidizing or reducing agents. A bioelectrochemical system was applied to control the redox conditions in culture and to measure the methane-producing activity of M.thermautotrophicus at a constant potential from +0 center dot 2 to 0 center dot 8V (vs Ag/AgCl). Methane production and growth of M.thermautotrophicus were 1 center dot 6 and 3 center dot 5 times increased at 0 center dot 8V, compared with control experiments without electrolysis, respectively, while methanogenesis was suppressed between +0 center dot 2 and 0 center dot 2V. A clear relationship between an electrochemically regulated redox potential and methanogenesis was revealed.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 24 条
[1]   Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival:: effects of impermeable oxidant [J].
Bagramyan, K ;
Galstyan, A ;
Trchounian, A .
BIOELECTROCHEMISTRY, 2000, 51 (02) :151-156
[2]   METHANOGENS - RE-EVALUATION OF A UNIQUE BIOLOGICAL GROUP [J].
BALCH, WE ;
FOX, GE ;
MAGRUM, LJ ;
WOESE, CR ;
WOLFE, RS .
MICROBIOLOGICAL REVIEWS, 1979, 43 (02) :260-296
[3]  
Brad AJ., 2000, Electrochemical Methods: Fundamentals and Applications
[4]   Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J].
Call, Douglas ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) :3401-3406
[5]   Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis [J].
Cheng, Shaoan ;
Xing, Defeng ;
Call, Douglas F. ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) :3953-3958
[6]   REDOX BEHAVIOR OF NICKEL IN HYDROGENASE FROM METHANOBACTERIUM-THERMOAUTOTROPHICUM (STRAIN MARBURG) - CORRELATION BETWEEN THE NICKEL VALENCE STATE AND ENZYME-ACTIVITY [J].
COREMANS, JMCC ;
VANDERZWAAN, JW ;
ALBRACHT, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 997 (03) :256-267
[7]   Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment [J].
Kappler, A ;
Benz, M ;
Schink, B ;
Brune, A .
FEMS MICROBIOLOGY ECOLOGY, 2004, 47 (01) :85-92
[8]   More Than 200 Genes Required for Methane Formation from H2 and CO2 and Energy Conservation Are Present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus [J].
Kaster, Anne-Kristin ;
Goenrich, Meike ;
Seedorf, Henning ;
Liesegang, Heiko ;
Wollherr, Antje ;
Gottschalk, Gerhard ;
Thauer, Rudolf K. .
ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL, 2011, 2011
[9]   Redox sensing by Escherichia coli:: Effects of copper ions as oxidizers on proton-coupled membrane transport [J].
Kirakosyan, Gayane ;
Trchounian, Artnen .
BIOELECTROCHEMISTRY, 2007, 70 (01) :58-63
[10]   Effect of O2, H2 and redox potential on the activity and synthesis of hydrogenase 2 in Escherichia coli [J].
Laurinavichene, TV ;
Chanal, A ;
Wu, LF ;
Tsygankov, AA .
RESEARCH IN MICROBIOLOGY, 2001, 152 (09) :793-798