High-yield fabrication of graphene-wrapped silicon nanoparticles for self-support and binder-free anodes of lithium-ion batteries

被引:18
作者
Yue, Hongwei
Li, Qun
Liu, Dequan
Hou, Xiaoyi
Bai, Shuai
Lin, Shumei
He, Deyan [1 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon; Graphene oxide; Composite; Anode; Lithium-ion battery; HIGH-PERFORMANCE ANODE; ELECTROCHEMICAL PERFORMANCE; SI NANOPARTICLES; HIGH-CAPACITY; AMORPHOUS-SILICON; THIN-FILM; NANOSHEETS; COMPOSITE; GRAPHITE; FOAM;
D O I
10.1016/j.jallcom.2018.02.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composites of graphene-wrapped Si nanoparticles (NPs) have been assembled via a one-pot liquid nitrogen fast freezing followed by a thermal reduction. It is found that, as a self-support and binder-free anode of lithium-ion battery, the composited graphene is helpful to form a uniform morphology, reduce the resistance of the electrode and isolate the Si NPs from the electrolyte to suppress the formation of unstable solid electrolyte interphase. Moreover, it can buffer the strain from the volume change of the Si NPs. The composite with an optimized mass ratio of reduced graphene oxide (rGO) to Si NPs exhibits significantly improved lithium storage performance with an excellent rate capability and a large reversible capacity of 1482 mAh g(-1) at a current density of 210 mA g(-1) after 300 cycles. Furthermore, the electrochemical reaction kinetics and interfacial behavior of the rGO/Si composites are investigated in-depthly. The work reported here can be extended to the fabrication of the other graphene-based materials. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 60 条
[1]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries [J].
Chabot, Victor ;
Feng, Kun ;
Park, Hey Woong ;
Hassan, Fathy M. ;
Elsayed, Abdel Rahman ;
Yu, Aiping ;
Xiao, Xingcheng ;
Chen, Zhongwei .
ELECTROCHIMICA ACTA, 2014, 130 :127-134
[4]   Li-ion batteries: basics, progress, and challenges [J].
Deng, Da .
ENERGY SCIENCE & ENGINEERING, 2015, 3 (05) :385-418
[5]   A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity [J].
Epur, Rigved ;
Hanumantha, Prashanth Jampani ;
Datta, Moni K. ;
Hong, Daeho ;
Gattu, Bharat ;
Kumta, Prashant N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) :11117-11129
[6]   Exceptional Electrochemical Performance of Si-Nanowires in 1,3-Dioxolane Solutions: A Surface Chemical Investigation [J].
Etacheri, Vinodkumar ;
Geiger, Uzi ;
Gofer, Yossi ;
Roberts, Gregory A. ;
Stefan, Ionel C. ;
Fasching, Rainier ;
Aurbach, Doron .
LANGMUIR, 2012, 28 (14) :6175-6184
[7]   Promising Dual-Doped Graphene Aerogel/SnS2 Nanocrystal Building High Performance Sodium Ion Batteries [J].
Fan, Linlin ;
Li, Xifei ;
Song, Xiaosheng ;
Hu, Nana ;
Xiong, Dongbin ;
Koo, Alicia ;
Sun, Xueliang .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (03) :2637-2648
[8]   Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability [J].
Fang, Shan ;
Shen, Laifa ;
Tong, Zhenkun ;
Zheng, Hao ;
Zhang, Fang ;
Zhang, Xiaogang .
NANOSCALE, 2015, 7 (16) :7409-7414
[9]   Engineered Si Sandwich Electrode: Si Nanoparticles/Graphite Sheet Hybrid on Ni Foam for Next-Generation High-Performance Lithium-Ion Batteries [J].
Gao, Chunhui ;
Zhao, Hailei ;
Lv, Pengpeng ;
Zhang, Tianhou ;
Xia, Qing ;
Wang, Jie .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) :1693-1698
[10]  
Gattu B., 2014, PULSE ELECTRODEPOSIT, P502