Proximality in Pisot tiling spaces

被引:0
|
作者
Barge, Marcy [1 ]
Diamond, Beverly [2 ]
机构
[1] Montana State Univ, Dept Math, Bozeman, MT 59717 USA
[2] Coll Charleston, Dept Math, Charleston, SC 29424 USA
关键词
substitution; tiling space; no cycle condition; proximality; balanced pair;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A substitution phi is strong Pisot if its abelianization matrix is nonsingular and all eigenvalues except the Perron-Frobenius eigenvalue have modulus less than one. For strong Pisot phi that satisfies a no cycle condition and for which the translation flow on the tiling space T-phi has pure discrete spectrum, we describe the collection T-phi(P) of pairs of proximal tilings in T-phi in a natural way as a substitution tiling space. We show that if psi is another such substitution, then T-phi and T-psi are homeomorphic if and only if T-phi(P) and T-psi(P) are homeomorphic. We make use of this invariant to distinguish tiling spaces for which other known invariants are ineffective. In addition, we show that for strong Pisot substitutions, pure discrete spectrum of the flow on the associated tiling space is equivalent to proximality being a closed relation on the tiling space.
引用
收藏
页码:191 / 238
页数:48
相关论文
共 50 条
  • [1] Proximality in Pisot tiling spaces
    Barge, Marcy
    Diamond, Beverly
    FUNDAMENTA MATHEMATICAE, 2007, 194 (02) : 191 - 238
  • [2] FACTORS OF PISOT TILING SPACES AND THE COINCIDENCE RANK CONJECTURE
    Barge, Marcy
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (02): : 357 - 381
  • [3] The branch locus for one-dimensional Pisot tiling spaces
    Barge, Marcy
    Diamond, Beverly
    Swanson, Richard
    FUNDAMENTA MATHEMATICAE, 2009, 204 (03) : 215 - 240
  • [4] Proximality and Pure Point Spectrum for Tiling Dynamical Systems
    Barge, Marcy
    Kellendonk, Johannes
    MICHIGAN MATHEMATICAL JOURNAL, 2013, 62 (04) : 793 - 822
  • [5] Self affine tiling and Pisot numeration system
    Akiyama, S
    NUMBER THEORY AND ITS APPLICATIONS, 1999, 2 : 7 - 17
  • [6] Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to β-shifts
    Baker, Veronica
    Barge, Marcy
    Kwapisz, Jaroslaw
    ANNALES DE L INSTITUT FOURIER, 2006, 56 (07) : 2213 - 2248
  • [7] Diffraction of a binary non-Pisot inflation tiling
    Baake, Michael
    Grimm, Uwe
    13TH INTERNATIONAL CONFERENCE ON QUASICRYSTALS (ICQ13), 2017, 809
  • [8] A note on a self-similar tiling generated by the minimal Pisot number
    Luo, J
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (03) : 335 - 339
  • [9] A SIMPLE EXAMPLE OF A NON-PISOT TILING WITH 5-FOLD SYMMETRY
    GODRECHE, C
    LANCON, F
    JOURNAL DE PHYSIQUE I, 1992, 2 (02): : 207 - 220
  • [10] Tiling Deformations, Cohomology, and Orbit Equivalence of Tiling Spaces
    Julien, Antoine
    Sadun, Lorenzo
    ANNALES HENRI POINCARE, 2018, 19 (10): : 3053 - 3088