Improved Optoelectronic Properties of Silicon Nanocrystals/Polymer Nanocomposites by Microplasma-Induced Liquid Chemistry

被引:33
作者
Mitra, Somak [1 ]
Cook, Steffan [1 ]
Svrcek, Vladimir [2 ]
Blackley, Ross A. [3 ]
Zhou, Wuzong [3 ]
Kovac, Janez [4 ]
Cvelbar, Uros [4 ]
Mariotti, Davide [1 ]
机构
[1] Univ Ulster, NIBEC, Newtownabbey BT37 0QB, North Ireland
[2] AIST, Res Ctr Photovolta Technol, Tsukuba, Ibaraki 3058568, Japan
[3] Univ St Andrews, Sch Chem, EaStChem, St Andrews KY16 9ST, Fife, Scotland
[4] Jozef Stefan Inst, Ljubljana 1000, Slovenia
基金
英国工程与自然科学研究理事会;
关键词
POROUS SILICON; OPTICAL-PROPERTIES; SURFACE-CHEMISTRY; TEMPERATURE; FILMS; LASER; 3,4-ETHYLENEDIOXYTHIOPHENE; PHOTOLUMINESCENCE; NANOPARTICLES; SILANIZATION;
D O I
10.1021/jp400938x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have demonstrated that three-dimensional (3D) surface engineering of silicon nanocrystals (SiNCs) by direct current microplasma processing in water with poly(3,4-ethylenedioxythiophene) doped by poly(styrenesulfonate) (PEDOT:PSS) can lead to nanocomposites with enhanced optoelectronic performance. Specifically, we have successfully shown improved photoluminescence properties of SiNCs inside water-based solution. The results also confirm that SiNCs become stable in water with potential application impact for biorelated applications. We have also shown that the microplasma processing in the presence of the polymer helps prevent the fast oxidation process over a longer period of time in comparison to the unprocessed sample. Furthermore, the assessment of transport properties confirmed the improvement of exciton dissociation after microplasma surface engineering; this can have direct implications for higher performance optoelectronic devices including solar cells.
引用
收藏
页码:23198 / 23207
页数:10
相关论文
共 65 条
[11]   High-contrast electrochromism from layer-by-layer polymer films [J].
DeLongchamp, DM ;
Kastantin, M ;
Hammond, PT .
CHEMISTRY OF MATERIALS, 2003, 15 (08) :1575-1586
[12]   Semiconductor/Polymer Nanocomposites of Acrylates and Nanocrystalline Silicon by Laser-Induced Thermal Polymerization [J].
Deubel, Frank ;
Steenackers, Marin ;
Garrido, Jose A. ;
Stutzmann, Martin ;
Jordan, Rainer .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2013, 298 (11) :1160-1165
[13]   Nanocrystalline silicon in biological studies [J].
Fucikova, Anna ;
Valenta, Jan ;
Pelant, Ivan ;
Kusova, Katerina ;
Brezina, Vitezslav .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 3, 2011, 8 (03) :1093-1096
[14]  
Fuechsle M, 2010, NAT NANOTECHNOL, V5, P502, DOI [10.1038/NNANO.2010.95, 10.1038/nnano.2010.95]
[15]  
Groenendaal BL, 2000, ADV MATER, V12, P481, DOI 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO
[16]  
2-C
[17]   POROUS SILICON [J].
HAMILTON, B .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (09) :1187-1207
[18]   Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods [J].
Jang, J ;
Chang, M ;
Yoon, H .
ADVANCED MATERIALS, 2005, 17 (13) :1616-+
[19]   Formation of nanoislands on conducting poly (3,4-ethylenedioxythiophene) films by high-energy-ion irradiation: Applications as field emitters and capacitor electrodes [J].
Joo, J ;
Park, SK ;
Seo, DS ;
Lee, SJ ;
Kim, HS ;
Ryu, KS ;
Lee, TJ ;
Seo, SH ;
Lee, CJ .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (09) :1465-1470
[20]   Improved polypyrrole/silicon junctions by surfacial modification of hydrogen-terminated silicon using organolithium reagents [J].
Kim, NY ;
Laibinis, PE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (30) :7162-7163