Improved Optoelectronic Properties of Silicon Nanocrystals/Polymer Nanocomposites by Microplasma-Induced Liquid Chemistry

被引:33
作者
Mitra, Somak [1 ]
Cook, Steffan [1 ]
Svrcek, Vladimir [2 ]
Blackley, Ross A. [3 ]
Zhou, Wuzong [3 ]
Kovac, Janez [4 ]
Cvelbar, Uros [4 ]
Mariotti, Davide [1 ]
机构
[1] Univ Ulster, NIBEC, Newtownabbey BT37 0QB, North Ireland
[2] AIST, Res Ctr Photovolta Technol, Tsukuba, Ibaraki 3058568, Japan
[3] Univ St Andrews, Sch Chem, EaStChem, St Andrews KY16 9ST, Fife, Scotland
[4] Jozef Stefan Inst, Ljubljana 1000, Slovenia
基金
英国工程与自然科学研究理事会;
关键词
POROUS SILICON; OPTICAL-PROPERTIES; SURFACE-CHEMISTRY; TEMPERATURE; FILMS; LASER; 3,4-ETHYLENEDIOXYTHIOPHENE; PHOTOLUMINESCENCE; NANOPARTICLES; SILANIZATION;
D O I
10.1021/jp400938x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have demonstrated that three-dimensional (3D) surface engineering of silicon nanocrystals (SiNCs) by direct current microplasma processing in water with poly(3,4-ethylenedioxythiophene) doped by poly(styrenesulfonate) (PEDOT:PSS) can lead to nanocomposites with enhanced optoelectronic performance. Specifically, we have successfully shown improved photoluminescence properties of SiNCs inside water-based solution. The results also confirm that SiNCs become stable in water with potential application impact for biorelated applications. We have also shown that the microplasma processing in the presence of the polymer helps prevent the fast oxidation process over a longer period of time in comparison to the unprocessed sample. Furthermore, the assessment of transport properties confirmed the improvement of exciton dissociation after microplasma surface engineering; this can have direct implications for higher performance optoelectronic devices including solar cells.
引用
收藏
页码:23198 / 23207
页数:10
相关论文
共 65 条
[1]   Silanization of Low-Temperature-Plasma Synthesized Silicon Quantum Dots for Production of a Tunable, Stable, Colloidal Solution [J].
Anderson, I. E. ;
Shircliff, R. A. ;
Macauley, C. ;
Smith, D. K. ;
Lee, B. G. ;
Agarwal, S. ;
Stradins, P. ;
Collins, R. T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (06) :3979-3987
[2]  
[Anonymous], 2013, J PHYS CHEM C, V117, P23198
[3]  
[Anonymous], 2013, J PHYS CHEM C, V117, P23198, DOI DOI 10.1021/113400938X
[4]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[5]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[6]   Copolymer from electropolymerization of thiophene and 3,4-ethylenedioxythiophene and its use as cathode for lithium ion battery [J].
Chang, CC ;
Her, LJ ;
Hong, JL .
ELECTROCHIMICA ACTA, 2005, 50 (22) :4461-4468
[7]   EFFECT OF POROSITY ON INFRARED-ABSORPTION SPECTRA OF SILICON DIOXIDE [J].
CHOU, JS ;
LEE, SC .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (04) :1805-1807
[8]   Chemical Insight into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals [J].
Dasog, Mita ;
Yang, Zhenyu ;
Regli, Sarah ;
Atkins, Tonya M. ;
Faramus, Angelique ;
Singh, Mani P. ;
Muthuswamy, Elayaraja ;
Kauzlarich, Susan M. ;
Tilley, Richard D. ;
Veinot, Jonathan G. C. .
ACS NANO, 2013, 7 (03) :2676-2685
[9]   Size independent blue luminescence in nitrogen passivated silicon nanocrystals [J].
Dasog, Mita ;
Veinot, Jonathan G. C. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (10) :1844-1846
[10]   THEORETICAL ASPECTS OF THE LUMINESCENCE OF POROUS SILICON [J].
DELERUE, C ;
ALLAN, G ;
LANNOO, M .
PHYSICAL REVIEW B, 1993, 48 (15) :11024-11036