The polynomial method and restricted sums of congruence classes

被引:87
作者
Alon, N
Nathanson, MB
Ruzsa, I
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAEL
[2] CUNY,LEHMAN COLL,DEPT MATH,BRONX,NY 10468
[3] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
基金
匈牙利科学研究基金会;
关键词
D O I
10.1006/jnth.1996.0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a simple and general algebraic technique for obtaining results in Additive Number Theory, and apply it to derive various new extensions of the Cauchy-Davenport Theorem. In particular we obtain, for subsets A(0), A(1), ..., A(k) of the finite field Z(p), a tight lower bound on the minimum possible cardinality of {a(0) + a(1), + ... + a(k): a(i) is an element of A(i), a(i) not equal a(j) for 0 less than or equal to i < j less than or equal to k} as a function of the cardinalities of the sets A(i). (C) 1996 Academic Press, Inc.
引用
收藏
页码:404 / 417
页数:14
相关论文
共 19 条
[1]   ADDING DISTINCT CONGRUENCE CLASSES MODULO-A-PRIME [J].
ALON, N ;
NATHANSON, MB ;
RUZSA, I .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (03) :250-255
[2]   COLORINGS AND ORIENTATIONS OF GRAPHS [J].
ALON, N ;
TARSI, M .
COMBINATORICA, 1992, 12 (02) :125-134
[3]   CYCLIC SPACES FOR GRASSMANN DERIVATIVES AND ADDITIVE THEORY [J].
DASILVA, JAD ;
HAMIDOUNE, YO .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :140-146
[4]  
Davenport H., 1935, J. Lond. Math. Soc., V2, P30
[5]  
Erdo P., 1980, Monographs of L'Enseignement Mathematique, V28
[6]  
FREIMAN GA, 1992, PROOF P ERDOS CONJEC
[8]  
MACMAHON PA, 1915, COMBINATORY ANAL, pCH5
[9]   HOW MANY SLOPES IN A POLYGON [J].
MANSFIELD, R .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 39 (03) :265-272
[10]  
NATHANSON MB, 1994, ADDITIVE NUMBER THEO, V1