Mechanical behavior of structurally gradient nickel alloy

被引:84
作者
Ding, Jie [1 ]
Li, Q. [1 ]
Li, Jin [1 ]
Xue, S. [1 ]
Fan, Z. [2 ]
Wang, H. [1 ,3 ]
Zhang, X. [1 ]
机构
[1] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
Nickel-based alloy; Surface mechanical grinding treatment; Gradient structure; In situ compression; STRAIN-RATE SENSITIVITY; SEVERE PLASTIC-DEFORMATION; STACKING-FAULT ENERGY; GRAIN-REFINEMENT; TRIP/TWIP STEELS; STAINLESS-STEEL; BACK STRESS; NANOSTRUCTURED MATERIALS; SURFACE-LAYER; AISI; 316L;
D O I
10.1016/j.actamat.2018.02.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Certain structurally gradient metallic materials have shown a combination of high strength and work hardening capability. The fundamental mechanisms behind such a unique mechanical behavior remain less well understood. Here we processed NiCrMo based C-22HS alloys by surface mechanical grinding treatment to achieve a gradient microstructure consisting of surface nanolaminated layer, deformation twinned layer and severely deformed layers. In situ micropillar compression tests performed inside a scanning electron microscope reveal different mechanical behaviors of each layer. This study suggests that the increase of intergranular back stress may have contributed to the high strain hardening behavior of the gradient material. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
引用
收藏
页码:57 / 67
页数:11
相关论文
共 83 条
[1]   Grain boundary diffusion and recrystallization in ultrafine grain copper produced by equal channel angular pressing [J].
Amouyal, Y. ;
Divinski, S. V. ;
Klinger, L. ;
Rabkin, E. .
ACTA MATERIALIA, 2008, 56 (19) :5500-5513
[2]   A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity [J].
Bayley, C. J. ;
Brekelmans, W. A. M. ;
Geers, M. G. D. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (24) :7268-7286
[3]   Advanced microstructural characterization of the intergranular oxidation of Alloy 600 [J].
Bertali, G. ;
Scenini, F. ;
Burke, M. G. .
CORROSION SCIENCE, 2015, 100 :474-483
[4]  
Blicharski M., 1979, Metal Science, V13, P516, DOI 10.1179/030634579790438318
[5]   Modelling of TWIP effect on work-hardening [J].
Bouaziz, O ;
Guelton, N .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 319 :246-249
[6]   In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries [J].
Bufford, D. ;
Liu, Y. ;
Wang, J. ;
Wang, H. ;
Zhang, X. .
NATURE COMMUNICATIONS, 2014, 5
[7]   STACKING-FAULT ENERGY OF NICKEL [J].
CARTER, CB ;
HOLMES, SM .
PHILOSOPHICAL MAGAZINE, 1977, 35 (05) :1161-1172
[8]   State-of-the-knowledge on TWIP steel [J].
De Cooman, B. C. ;
Kwon, O. ;
Chin, K. -G. .
MATERIALS SCIENCE AND TECHNOLOGY, 2012, 28 (05) :513-527
[9]   Predicting of mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels using neural network modeling [J].
Dini, G. ;
Najafizadeh, A. ;
Monir-Vaghefi, S. M. ;
Ebnonnasir, A. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (04) :959-965
[10]  
Duggan B. J., 1978, Metal Science, V12, P343