The coalgebra automorphism group of Hopf algebra kq[x, x-1, y]

被引:5
作者
Chen, Hui-Xiang [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
关键词
QUANTUM; DERIVATIONS;
D O I
10.1016/j.jpaa.2013.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k(q)[x, x(-1), y] be the localization of the quantum plane k(q)[x, y] over a field k, where 0 not equal q is an element of k. Then k(q)[x, x(-1), y] is a graded Hopf algebra, which can be regarded as the non-negative part of the quantum enveloping algebra U-q(sl(2)). Under the assumption that q is not a root of unity, we investigate the coalgebra automorphism group of k(q)[x, x(-1), y]. We describe the structures of the graded coalgebra automorphism group and the coalgebra automorphism group of k(q)[x, x(-1), y], respectively. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1870 / 1887
页数:18
相关论文
共 30 条
[1]   DERIVATIONS AND SUTOMORPHISMS OF SOME QUANTUM ALGEBRAS [J].
ALEV, J ;
CHAMARIE, M .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) :1787-1802
[2]  
Andruskiewitsch N., 2008, IRMA LECT MATH THEOR, V12
[3]  
Artamonov V. A., 2005, Ann. Univ. Ferrara Sez., V51, P29
[4]   Quantum polynomial algebras [J].
Artamonov V.A. .
Journal of Mathematical Sciences, 1997, 87 (3) :3441-3462
[5]   AUTOMORPHISMS AND DERIVATIONS OF INCIDENCE ALGEBRAS [J].
BACLAWSKI, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (02) :351-356
[6]   Prime spectra of quantum semisimple groups [J].
Brown, KA ;
Goodearl, KR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (06) :2465-2502
[7]   Cleft extensions for a Hopf algebra kq[X,X-1,Y] [J].
Chen, HX .
GLASGOW MATHEMATICAL JOURNAL, 1998, 40 :147-160
[8]  
Chin W, 1996, J LOND MATH SOC, V53, P50
[9]   THE AUTOMORPHISM GROUP OF A STRUCTURAL MATRIX ALGEBRA [J].
COELHO, SP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 195 :35-58
[10]  
Demidov, 1998, QUANTUM GROUPS