Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation

被引:58
作者
Chen, Minghua [1 ]
Deng, Weihua [1 ]
Wu, Yujiang [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Space-time Caputo-Riesz fractional; diffusion equation; Numerical stability; Convergence; PARTIAL-DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; APPROXIMATIONS; TERM;
D O I
10.1016/j.apnum.2013.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the space-time Caputo-Riesz fractional diffusion equation with variable coefficients on a finite domain. The finite difference schemes for this equation are provided. We theoretically prove and numerically verify that the implicit finite difference scheme is unconditionally stable (the explicit scheme is conditionally stable with the stability condition tau(gamma)/(Delta x)(alpha) + tau(gamma)/(Delta y)(beta) < C) and 2nd order convergent in space direction, and (2 - gamma)th order convergent in time direction, where gamma is an element of (0, 1]. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 41
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[3]  
Chen M.H., 2011, 2 ORDER NUMERI UNPUB
[4]   Finite difference/predictor-corrector approximations for the space and time fractional Fokker-Planck equation [J].
Deng, Kaiying ;
Deng, Weihua .
APPLIED MATHEMATICS LETTERS, 2012, 25 (11) :1815-1821
[5]   Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain [J].
Jiang, H. ;
Liu, F. ;
Turner, I. ;
Burrage, K. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) :1117-1127
[6]   Finite difference/spectral approximations for the time-fractional diffusion equation [J].
Lin, Yumin ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1533-1552
[7]   Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation [J].
Liu, F. ;
Zhuang, P. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) :12-20
[8]   Finite difference approximations for two-sided space-fractional partial differential equations [J].
Meerschaert, MM ;
Tadjeran, C .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (01) :80-90
[9]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[10]  
Miller K.S., 1993, INTRO FRACTIONAL INT