CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES

被引:134
作者
Guionnet, A. [1 ]
Zeitouni, O. [2 ]
机构
[1] Ecole Normale Super, DMA, 45 Rue Ulm, F-75005 Paris, France
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Random Matrices; concentration inequalities; non-commutative functionals;
D O I
10.1214/ECP.v5-1026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive concentration inequalities for functions of the empirical measure of eigenvalues for large, random, self adjoint matrices, with not necessarily Gaussian entries. The results presented apply in particular to non-Gaussian Wigner and Wishart matrices. We also provide concentration bounds for non-commutative functionals of random matrices.
引用
收藏
页码:119 / 136
页数:18
相关论文
共 31 条
[1]  
[Anonymous], 1989, REAL ANAL PROBABILIT
[3]  
Bai ZD, 1999, STAT SINICA, V9, P611
[5]  
BenArous G, 1997, PROBAB THEORY REL, V108, P517
[6]  
Berezin F. A., 1973, Theoretical and Mathematical Physics, V17, P1163, DOI 10.1007/BF01037593
[7]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28
[8]   ON THE LEVEL DENSITY OF RANDOM BAND MATRICES [J].
BOGACHEV, LV ;
MOLCHANOV, SA ;
PASTUR, LA .
MATHEMATICAL NOTES, 1991, 50 (5-6) :1232-1242
[9]  
Cabanal-Duvillard T., 1999, PREPRINT
[10]  
Cabanal-Duvillard T., 1999, ANN I H POINCA UNPUB