Calderon type formula in Quantum calculus

被引:2
|
作者
Nemri, Akram [1 ,2 ]
Selmi, Belgacem [3 ]
机构
[1] Jazan Univ, Dept Math, Coll Sci, Jazan 45142, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
[3] Fac Sci Bizerte, Dept Math, Zarzouna 7021, Tunisia
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2013年 / 24卷 / 03期
关键词
Calderon's formula; Quantum calculus;
D O I
10.1016/j.indag.2013.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a Calderon type reproducing formula involving finite q-measures is considered in Quantum calculus. (C) 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:491 / 504
页数:14
相关论文
共 50 条
  • [1] Taylor's formula for general quantum calculus
    Georgiev, Svetlin G.
    Tikare, Sanket
    JOURNAL OF MATHEMATICAL MODELING, 2023, 11 (03): : 491 - 505
  • [2] Sobolev type spaces in quantum calculus
    Nemri, Akram
    Selmi, Belgacem
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 588 - 601
  • [3] Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
    Ali, Muhammad Aamir
    Budak, Huseyin
    Akkurt, Abdullah
    Chu, Yu-Ming
    OPEN MATHEMATICS, 2021, 19 : 440 - 449
  • [4] Euler-type Boundary Value Problems in Quantum Calculus
    Bohner, Martin
    Hudson, Thomas
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 9 (J07): : 19 - 23
  • [5] Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
    Sitho, Surang
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    MATHEMATICS, 2021, 9 (14)
  • [6] Montgomery identity and Ostrowski-type inequalities via quantum calculus
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Abbas, Mujahid
    Chasreechai, Saowaluck
    OPEN MATHEMATICS, 2021, 19 (01): : 1098 - 1109
  • [7] NEWTON-TYPE INEQUALITIES ASSOCIATED WITH CONVEX FUNCTIONS VIA QUANTUM CALCULUS
    Luangboon, Waewta
    Nonlaopon, Kamsing
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 383 - 398
  • [8] Some New Anderson Type h and q Integral Inequalities in Quantum Calculus
    Abbas, Munawwar Ali
    Chen, Li
    Khan, Asif R.
    Muhammad, Ghulam
    Sun, Bo
    Hussain, Sadaqat
    Hussain, Javed
    Rasool, Adeeb Ur
    SYMMETRY-BASEL, 2022, 14 (07):
  • [9] The Hahn Quantum Variational Calculus
    Malinowska, A. B.
    Torres, D. F. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 147 (03) : 419 - 442
  • [10] A general quantum difference calculus
    Alaa E Hamza
    Abdel-Shakoor M Sarhan
    Enas M Shehata
    Khaled A Aldwoah
    Advances in Difference Equations, 2015