Modular-type functions attached to mirror quintic Calabi-Yau varieties

被引:12
作者
Movasati, Hossein [1 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Gauss-Manin connection; Yukawa coupling; Hodge filtration; Griffiths transversality; MONODROMY; MANIFOLDS;
D O I
10.1007/s00209-015-1513-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study a differential algebra of modular-type functions attached to the periods of a one-parameter family of Calabi-Yau varieties which is mirror dual to the universal family of quintic threefolds. Such an algebra is generated by seven functions satisfying functional and differential equations in parallel to the modular functional equations of classical Eisenstein series and the Ramanujan differential equation. Our result is the first example of automorphic-type functions attached to varieties whose period domain is not Hermitian symmetric. It is a reformulation and realization of a problem of Griffiths from the seventies on the existence of automorphic functions for the moduli of polarized Hodge structures.
引用
收藏
页码:907 / 929
页数:23
相关论文
共 36 条
[21]   The Ising model: from elliptic curves to modular forms and Calabi-Yau equations [J].
Bostan, A. ;
Boukraa, S. ;
Hassani, S. ;
van Hoeij, M. ;
Maillard, J-M ;
Weil, J-A ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (04)
[22]   A GLOBAL MIRROR SYMMETRY FRAMEWORK FOR THE LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE [J].
Chiodo, Alessandro ;
Ruan, Yongbin .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) :2803-2864
[23]   Towards open string mirror symmetry for one-parameter Calabi-Yau hypersurfaces [J].
Knapp, Johanna ;
Scheidegger, Emanuel .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (04) :991-1075
[24]   The E3/Z3 orbifold, mirror symmetry, and Hodge structures of Calabi-Yau type [J].
Cacciatori, Sergio Luigi ;
Filippini, Sara Angela .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 :70-89
[25]   Mirror symmetry for quasi-smooth Calabi-Yau hypersurfaces in weighted projective spaces [J].
Batyrev, Victor ;
Schaller, Karin .
JOURNAL OF GEOMETRY AND PHYSICS, 2021, 164
[26]   LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE, GLOBAL MIRROR SYMMETRY AND ORLOV EQUIVALENCE [J].
Chiodo, Alessandro ;
Iritani, Hiroshi ;
Ruan, Yongbin .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2014, (119) :127-216
[27]   Calabi-Yau Three-folds of Type K (I): Classification [J].
Hashimoto, Kenji ;
Kanazawa, Atsushi .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (21) :6654-6693
[28]   Calabi-Yau period geometry and restricted moduli in Type II compactifications [J].
Duecker, Janis ;
Klemm, Albrecht ;
Piribauer, Julian F. .
JOURNAL OF HIGH ENERGY PHYSICS, 2025, (07)
[29]   D-instantons in Type IIA string theory on Calabi-Yau threefolds [J].
Alexandrov, Sergei ;
Sen, Ashoke ;
Stefanski, Bogdan Jr Jr .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)
[30]   CALABI-YAU 3-FOLDS OF BORCEA-VOISIN TYPE AND ELLIPTIC FIBRATIONS [J].
Cattaneo, Andrea ;
Garbagnati, Alice .
TOHOKU MATHEMATICAL JOURNAL, 2016, 68 (04) :515-558