From electricity to fuels: Descriptors for C1 selectivity in electrochemical CO2 reduction

被引:103
作者
Tang, Michael T. [1 ,2 ]
Peng, Hongjie [2 ]
Lamoureux, Philomena Schlexer [2 ]
Bajdich, Michal [2 ]
Abild-Pedersen, Frank [2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
关键词
Electrochemistry; CO2; reduction; Descriptor; Selectivity; Material screening; CARBON-MONOXIDE; ELECTROREDUCTION; DIOXIDE; AG; INSIGHTS; TRENDS; AU; ELECTROCATALYSTS; MULTICARBON; MECHANISM;
D O I
10.1016/j.apcatb.2020.119384
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of carbon dioxide (CO2RR) over transition metals follows a complex reaction network. In this study, we combine observations from experimental literature with a theoretical analysis of energetics to rationalize that not all intermediates in the reduction of CO2 are formed through direct protonation steps. We derive a selectivity map for two-electron products (carbon monoxide (CO) and formate) on pure metal surfaces using only the CO and OH binding energies as descriptors. For the pure metals that are selective towards CO formation, the variation of the CO binding energy is sufficient to further subdivide the map into domains that predominantly form H-2, CO, and more reduced products. Our analysis rationalizes experimentally observed product distributions in CO2RR across pure metal systems. Overall, we highlight the need for additional material screening descriptors for CO2R and the importance of considering competition from the elementary steps of the hydrogen evolution reaction.
引用
收藏
页数:11
相关论文
共 66 条
  • [1] CO adsorption energies on metals with correction for high coordination adsorption sites - A density functional study
    Abild-Pedersen, F.
    Andersson, M. P.
    [J]. SURFACE SCIENCE, 2007, 601 (07) : 1747 - 1753
  • [2] Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO
    Back, Seoin
    Yeom, Min Sun
    Jung, Yousung
    [J]. ACS CATALYSIS, 2015, 5 (09): : 5089 - 5096
  • [3] Electrochemical CO2 Reduction: A Classification Problem
    Bagger, Alexander
    Ju, Wen
    Sofia Varela, Ana
    Strasser, Peter
    Rossmeisl, Jan
    [J]. CHEMPHYSCHEM, 2017, 18 (22) : 3266 - 3273
  • [4] An object-oriented scripting interface to a legacy electronic structure code
    Bahn, SR
    Jacobsen, KW
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) : 56 - 66
  • [5] Cai F, 2017, CHEM SCI, V8, P2569, DOI 10.1039/c6sc04966d
  • [6] Trends in the Catalytic Activity of Hydrogen Evolution during CO2 Electroreduction on Transition Metals
    Cave, Etosha R.
    Shi, Chuan
    Kuhl, Kendra P.
    Hatsukade, Toni
    Abram, David N.
    Hahn, Christopher
    Chan, Karen
    Jaramillo, Thomas F.
    [J]. ACS CATALYSIS, 2018, 8 (04): : 3035 - 3040
  • [7] Electrochemical Barriers Made Simple
    Chan, Karen
    Norskov, Jens K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (14): : 2663 - 2668
  • [8] Potential Dependence of Electrochemical Barriers from ab Initio Calculations
    Chant, Karen
    Norskov, Jens K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (09): : 1686 - 1690
  • [9] Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO2 to Formate
    Chatterjee, Swarnendu
    Griego, Charles
    Hart, James L.
    Li, Yawei
    Taheri, Mitra L.
    Keith, John
    Snyder, Joshua D.
    [J]. ACS CATALYSIS, 2019, 9 (06) : 5290 - 5301
  • [10] Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
    Chen, Yihong
    Li, Christina W.
    Kanan, Matthew W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) : 19969 - 19972