Quantum ergodicity for restrictions to hypersurfaces

被引:24
作者
Dyatlov, Semyon [1 ]
Zworski, Maciej [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
EIGENFUNCTIONS; SUBMANIFOLDS; BILLIARDS;
D O I
10.1088/0951-7715/26/1/35
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantum ergodicity theorem states that for quantum systems with ergodic classical flows, eigenstates are, on average, uniformly distributed on energy surfaces. We show that if N is a hypersurface in the position space satisfying a simple dynamical condition, the restrictions of eigenstates to N are also quantum ergodic.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 2012, GRADUATE STUDIES MAT
[2]   Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds [J].
Burq, N. ;
Gerard, P. ;
Tzvetkov, N. .
DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) :445-486
[3]  
Christianson H, 2012, ARXIV12050286
[4]   QUANTUM MONODROMY AND NONCONCENTRATION NEAR A CLOSED SEMI-HYPERBOLIC ORBIT [J].
Christianson, Hans .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) :3373-3438
[5]  
Dyatlov S, 2012, ARXIV12041305
[6]   Asymptotic Distribution of Quasi-Normal Modes for Kerr-de Sitter Black Holes [J].
Dyatlov, Semyon .
ANNALES HENRI POINCARE, 2012, 13 (05) :1101-1166
[7]   ERGODIC PROPERTIES OF EIGENFUNCTIONS FOR THE DIRICHLET PROBLEM [J].
GERARD, P ;
LEICHTNAM, E .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (02) :559-607
[8]   ERGODICITY AND SEMICLASSICAL LIMITS [J].
HELFFER, B ;
MARTINEZ, A ;
ROBERT, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (02) :313-326
[9]  
REED M., 1978, Methods of Modern Mathematical Physics, IV: Analysis of operators
[10]   Quantum monodromy and semi-classical trace formula [J].
Sjöstrand, J ;
Zworski, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (01) :1-33