Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity

被引:471
作者
Huang, Liying [1 ,2 ]
Xu, Hui [1 ]
Li, Yeping [1 ]
Li, Huaming [1 ]
Cheng, Xiaonong [2 ]
Xia, Jixiang [1 ]
Xu, Yuanguo [1 ]
Cai, Guobin [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
关键词
GRAPHITIC CARBON NITRIDE; ORGANIC-INORGANIC COMPOSITE; HYDROGEN EVOLUTION; X-RAY; WO3; G-C3N4; DEGRADATION; NANORODS; HYBRID; PHOTODEGRADATION;
D O I
10.1039/c3dt00115f
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Novel WO3/g-C3N4 composite photocatalysts were prepared by a calcination process with different mass contents of WO3. The photocatalysts were characterized by thermogravimetric analysis (TG), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and electrochemical impedance spectroscopy (EIS). The photocatalytic activity of the photocatalysts was evaluated by degradation of methylene blue (MB) dye and 4-chlorophenol (4-CP) under visible light. The results indicated that the WO3/g-C3N4 composite photocatalysts showed higher photocatalytic activity than both the pure WO3 and pure g-C3N4. The optimum photocatalytic activity of WO3/g-C3N4 at a WO3 mass content of 9.7% under visible light irradiation was up to 4.2 times and 2.9 times as high as that of the pure WO3 and pure g-C3N4, respectively. The remarkably increased performance of WO3/g-C3N4 was mainly attributed to the synergistic effect between the interface of WO3 and g-C3N4, including enhanced optical absorption in the visible region, enlarged specific surface areas and the suitable band positions of WO3/g-C3N4 composites.
引用
收藏
页码:8606 / 8616
页数:11
相关论文
共 60 条
[1]   Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide [J].
Abe, Ryu ;
Takami, Hiticishi ;
Murakami, Naoya ;
Ohtani, Bunsho .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7780-+
[2]   The history and future of semiconductor heterostructures [J].
Alferov, ZI .
SEMICONDUCTORS, 1998, 32 (01) :1-14
[3]   Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation [J].
Arai, Takeo ;
Yanagida, Masatoshi ;
Konishi, Yoshinari ;
Iwasaki, Yasukazu ;
Sugihara, Hideki ;
Sayama, Kazuhiro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (21) :7574-7577
[4]   Visible Photocatalytic Activity Enhancement of ZnWO4 by Graphene Hybridization [J].
Bai, Xiaojuan ;
Wang, Li ;
Zhu, Yongfa .
ACS CATALYSIS, 2012, 2 (12) :2769-2778
[5]   Improved Photocatalytic Activity of WO3 through Clustered Fe2O3 for Organic Degradation in the Presence of H2O2 [J].
Bi, Dongqin ;
Xu, Yiming .
LANGMUIR, 2011, 27 (15) :9359-9366
[6]   Enhanced nitrogen doping in TiO2 nanoparticles [J].
Burda, C ;
Lou, YB ;
Chen, XB ;
Samia, ACS ;
Stout, J ;
Gole, JL .
NANO LETTERS, 2003, 3 (08) :1049-1051
[7]   Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties [J].
Cao, Jing ;
Luo, Bangde ;
Lin, Haili ;
Xu, Benyan ;
Chen, Shifu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 111 :288-296
[8]   Preparation and characterization of WO3/Bi3O4Cl nanocomposite and its photocatalytic behavior under visible light irradiation [J].
Chakraborty, Ashok Kumar ;
Kebede, Mesfin Abayneh .
REACTION KINETICS MECHANISMS AND CATALYSIS, 2012, 106 (01) :83-98
[9]   Semiconductor-mediated photodegradation of pollutants under visible-light irradiation [J].
Chen, Chuncheng ;
Ma, Wanhong ;
Zhao, Jincai .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) :4206-4219
[10]   Synthesis of Transition Metal-Modified Carbon Nitride Polymers for Selective Hydrocarbon Oxidation [J].
Ding, Zhengxin ;
Chen, Xiufang ;
Antonietti, Markus ;
Wang, Xinchen .
CHEMSUSCHEM, 2011, 4 (02) :274-281