High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes

被引:215
作者
Gao, Lina [1 ,2 ]
Wang, Xianfu [1 ]
Xie, Zhong [1 ]
Song, Weifeng [1 ]
Wang, Lijing [2 ]
Wu, Xiang [2 ]
Qu, Fengyu [2 ]
Chen, Di [1 ]
Shen, Guozhen [1 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Harbin Normal Univ, Coll Chem & Chem Engn, Harbin 150025, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
关键词
CARBON-FIBER PAPER; ELECTROCHEMICAL PERFORMANCE; TUNGSTEN TRIOXIDE; ARRAYS; NANOSTRUCTURES; SUBSTRATE; ANODES;
D O I
10.1039/c3ta10831g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ordered WO3 nanowire arrays on carbon cloth (WNCC) conductive substrates are successfully prepared by a facile hydrothermal method. The as-prepared samples were characterized by XRD, SEM and TEM and directly functionalized as supercapacitor (SC) and lithium-ion battery (LIB) electrodes without using any ancillary materials such as carbon black or binder. The unique structural features endow them with excellent electrochemical performance. The SCs demonstrate high specific capacitance of 521 F g(-1) at 1 A g(-1) and 5.21 F cm(-2) at 10 A cm(-2) and excellent cyclic performance with nearly 100% capacity retention after 2000 cycles at a current density of 3 A g(-1). All-solid-state SCs based on the integrated electrodes are also presented, exhibiting high flexibility without obvious performance declination at different bending states. A high capacity of 662 mA h g(-1) after 140 cycles at a 0.28 C rate and excellent rate capabilities are also obtained for LIBs due to the unique structures of the integrated electrodes.
引用
收藏
页码:7167 / 7173
页数:7
相关论文
共 43 条
  • [1] Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles
    An, Cuihua
    Wang, Yijing
    Wang, Yaping
    Liu, Guang
    Li, Li
    Qiu, Fangyuan
    Xu, Yanan
    Jiao, Lifang
    Yuan, Huatang
    [J]. RSC ADVANCES, 2013, 3 (14): : 4628 - 4633
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [4] 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries
    Chaudhari, Sudeshna
    Srinivasan, Madhavi
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (43) : 23049 - 23056
  • [5] High-performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as electrode with a novel Li-ion quasi-ionic liquid as electrolyte
    Deng, Ming-Jay
    Chang, Jeng-Kuei
    Wang, Cheng-Chia
    Chen, Kai-Wen
    Lin, Chih-Ming
    Tang, Mau-Tsu
    Chen, Jin-Ming
    Lu, Kueih-Tzu
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) : 3942 - 3946
  • [6] Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals
    Gu, Zhanjun
    Li, Huiqiao
    Zhai, Tianyou
    Yang, Wensheng
    Xia, Yongyao
    Ma, Ying
    Yao, Jiannian
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2007, 180 (01) : 98 - 105
  • [7] Energy storage in electrochemical capacitors: designing functional materials to improve performance
    Hall, Peter J.
    Mirzaeian, Mojtaba
    Fletcher, S. Isobel
    Sillars, Fiona B.
    Rennie, Anthony J. R.
    Shitta-Bey, Gbolahan O.
    Wilson, Grant
    Cruden, Andrew
    Carter, Rebecca
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) : 1238 - 1251
  • [8] Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance
    Horng, Ying-Ying
    Lu, Yi-Chen
    Hsu, Yu-Kuei
    Chen, Chia-Chun
    Chen, Li-Chyong
    Chen, Kuei-Hsien
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (13) : 4418 - 4422
  • [9] Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage
    Jiang, Jian
    Li, Yuanyuan
    Liu, Jinping
    Huang, Xintang
    Yuan, Changzhou
    Lou, Xiong Wen
    [J]. ADVANCED MATERIALS, 2012, 24 (38) : 5166 - 5180
  • [10] Investigation of Pseudocapacitive Charge-Storage Behavior in Highly Conductive Ordered Mesoporous Tungsten Oxide Electrodes
    Jo, Changshin
    Hwang, Ilkyu
    Lee, Jinwoo
    Lee, Chul Wee
    Yoon, Songhun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (23) : 11880 - 11886