NiS/MoS2 Mott-Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production

被引:100
作者
Gu, Chengjun [1 ]
Zhou, Guangyao [2 ]
Yang, Jun [3 ,4 ]
Pang, Huan [5 ]
Zhang, Mingyi [6 ,7 ]
Zhao, Qun [8 ]
Gu, Xuefang [8 ]
Tian, Shu [8 ]
Zhang, Jubing [1 ]
Xu, Lin [1 ]
Tang, Yawen [1 ]
机构
[1] Nanjing Normal Univ, Sch Energy & Mech Engn, Sch Chem & Mat Sci, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Nanjing 210023, Peoples R China
[2] Jinling Inst Technol, Coll Sci, Nanjing 211169, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[4] Nanjing IPE Inst Green Mfg Ind, Nanjing 211100, Peoples R China
[5] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225009, Jiangsu, Peoples R China
[6] Harbin Normal Univ, Sch Phys & Elect Engn, Key Lab Photon & Elect Bandgap Mat, Minist Educ, Harbin 150025, Peoples R China
[7] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[8] Nantong Univ, Coll Chem & Chem Engn, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Mott-Schottky electrocatalyst; Electronic structure engineering; Hydrogen evolution reaction; Urea oxidation reaction; ALKALINE; ELECTROCATALYSTS; MOS2/NI3S2; NANOSHEETS; HYDROXIDE; GRAPHENE; CATALYST; SULFIDE;
D O I
10.1016/j.cej.2022.136321
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urea-assisted water electrolysis possesses the prospective prospect for high-efficiency hydrogen production by replacing oxygen evolution reaction (OER) with thermodynamically more favorable urea oxidation reaction (UOR). Modulating the electronic structure of electrocatalysts through constructing metal-semiconductor heteminterface represents an effective strategy to promote the electrochemical performances. Herein, we construct a Mott-Schottky bifunctional electrocatalyst by in-situ growth of NiS/MoS2 hetero-nanoflowers on the conductive carbon cloth (CC) substrate (abbreviated as NiS/MoS2@CC hereafter) for both hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). Thanks to the Mott-Schottky effect, the self-driven charge transfer occurs across the NiS/MoS2 heterointerfaces, which results in the built-in electric field, the accelerated charge transfer rate, and the modified chemisorption free energies for reaction intermediates, ultimately expediting the dissociation of water and urea molecules. Consequently, the as-fabricated NiS/MoS2@CC electrode only requires an overpotential of 87 mV for hydrogen evolution reaction (HER) in 1.0 M KOH and a potential of 1.36 V for UOR in 1.0 M KOH solution with 0.5 M urea to attain a current density of 10 mA cm(-2), respectively. Moreover, when served as the free-standing anode and cathode simultaneously, the NiS/MoS2@CC-assembled urea electrolyzer requires a cell voltage of 1.46 V at 10 mA cm(-2), which is 200 mV smaller than that of the pure water splitting counterpart. This study may deepen the understanding of electronic modulation via Mott-Schottky establishment.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction [J].
Chen, Dawei ;
Qiao, Man ;
Lu, Ying-Rui ;
Hao, Li ;
Liu, Dongdong ;
Dong, Chung-Li ;
Li, Yafei ;
Wang, Shuangyin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (28) :8691-8696
[2]   Hierarchical Nanostructures: Design for Sustainable Water Splitting [J].
Fang, Ming ;
Dong, Guofa ;
Wei, Renjie ;
Ho, Johnny C. .
ADVANCED ENERGY MATERIALS, 2017, 7 (23)
[3]   Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core-shell nanosheet arrays enables efficient oxygen evolution [J].
Gao, Xiaorui ;
Li, Xin ;
Yu, Yong ;
Kou, Zongkui ;
Wang, Pengyan ;
Liu, Ximeng ;
Zhang, Jie ;
He, Jiaqing ;
Mu, Shichun ;
Wang, John .
NANO ENERGY, 2021, 85
[4]   Engineering heterostructure and crystallinity of Ru/RuS2 nanoparticle composited with N-doped graphene as electrocatalysts for alkaline hydrogen evolution [J].
Gao, Xuyun ;
Li, Bo ;
Sun, Xuzhuo ;
Wu, Baofan ;
Hu, Yanping ;
Ning, Zhichao ;
Li, Jun ;
Wang, Ning .
CHINESE CHEMICAL LETTERS, 2021, 32 (11) :3591-3595
[5]   Optimizing local charge distribution of metal nodes in bimetallic metal-organic frameworks for efficient urea oxidation reaction [J].
Gao, Zhi ;
Wang, Yue ;
Xu, Li ;
Tao, Qinqin ;
Wang, Xiaodeng ;
Zhou, Zhiyi ;
Luo, Yidong ;
Yu, Jiaying ;
Huang, Yuxing .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[6]   In Situ Activated Co3-xNixO4 as a Highly Active and Ultrastable Electrocatalyst for Hydrogen Generation [J].
Guo, Kailu ;
Wang, Yantao ;
Huang, Junfeng ;
Lu, Min ;
Li, Hua ;
Peng, Yong ;
Xi, Pinxian ;
Zhang, Haoli ;
Huang, Jier ;
Lu, Siyu ;
Xu, Cailing .
ACS CATALYSIS, 2021, 11 (13) :8174-8182
[7]   Ultrathin and Porous Ni3S2/CoNi2S4 3D-Network Structure for Superhigh Energy Density Asymmetric Supercapacitors [J].
He, Weidong ;
Wang, Chenggang ;
Li, Huiqiao ;
Deng, Xiaolong ;
Xu, Xijin ;
Zhai, Tianyou .
ADVANCED ENERGY MATERIALS, 2017, 7 (21)
[8]   Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting [J].
Hou, Jungang ;
Wu, Yunzhen ;
Zhang, Bo ;
Cao, Shuyan ;
Li, Zhuwei ;
Sun, Licheng .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (20)
[9]   Boosting Hydrogen Transfer during Volmer Reaction at Oxides/Metal Nanocomposites for Efficient Alkaline Hydrogen Evolution [J].
Huang, Jinzhen ;
Han, Jiecai ;
Wu, Tao ;
Feng, Kun ;
Yao, Tai ;
Wang, Xianjie ;
Liu, Shengwei ;
Zhong, Jun ;
Zhang, Zhihua ;
Zhang, Yumin ;
Song, Bo .
ACS ENERGY LETTERS, 2019, 4 (12) :3002-3010
[10]   Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics [J].
Ji, Xiaoyuan ;
Ge, Lanlan ;
Liu, Chuang ;
Tang, Zhongmin ;
Xiao, Yufen ;
Chen, Wei ;
Lei, Zhouyue ;
Gao, Wei ;
Blake, Sara ;
De, Diba ;
Shi, Bingyang ;
Zeng, Xiaobing ;
Kong, Na ;
Zhang, Xingcai ;
Tao, Wei .
NATURE COMMUNICATIONS, 2021, 12 (01)