A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS

被引:1
作者
Nie, Cunyun [1 ]
Tan, Min [2 ]
机构
[1] Hunan Inst Engn, Dept Math & Phys, Xiangtan, Hunan, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Math & Computat Sci, Xiangtan, Hunan, Peoples R China
关键词
symmetry; finite volume element scheme; superconvergence; tetrahedron grids; MULTIGRID METHOD;
D O I
10.4134/JKMS.2012.49.4.765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a symmetric finite volume element (SFVE) scheme for a self-adjoint elliptic problem on tetrahedron grids and prove that our new scheme has optimal convergent order for the solution and has superconvergent order for the flux when grids are quasi-uniform and regular. The symmetry of our scheme is helpful to solve efficiently the corresponding discrete system. Numerical experiments are carried out to confirm the theoretical results.
引用
收藏
页码:765 / 778
页数:14
相关论文
共 31 条
[1]  
Abedini A. A., 2010, Australian Journal of Basic and Applied Sciences, V4, P3208
[2]  
Adams R., 1985, Sobolev Spaces
[3]   A MULTIGRID METHOD FOR AN OPTIMAL CONTROL PROBLEM OF A DIFFUSION-CONVECTION EQUATION [J].
Baek, Hunki ;
Kim, Sang Dong ;
Lee, Hyung-Chun .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (01) :83-100
[4]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[5]   3-D dynamic rupture simulations by a finite volume method [J].
Benjemaa, M. ;
Glinsky-Olivier, N. ;
Cruz-Atienza, V. M. ;
Virieux, J. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2009, 178 (01) :541-560
[6]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[7]  
Chen C., 1995, HIGH ACCUARCY THEORY
[8]  
Chen L, 2006, INT J NUMER ANAL MOD, V3, P273
[9]  
Chou SH, 2000, MATH COMPUT, V69, P103, DOI 10.1090/S0025-5718-99-01192-8
[10]  
CIARLET P. G., 2002, Classics in Appl. Math., V40