共 30 条
An approximate approach for the generalized variable-order fractional pantograph equation
被引:13
作者:
Avazzadeh, Z.
[1
]
Heydari, M. H.
[2
]
Mahmoudi, Mohammad Reza
[3
,4
]
机构:
[1] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Shiraz Univ Technol, Dept Math, Shiraz, Iran
[3] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[4] Fasa Univ, Fac Sci, Dept Stat, Fasa, Iran
关键词:
Pantograph equation;
Chebyshev cardinal functions (CCFs);
Variable-order (VO) fractional differentiation;
NUMERICAL-SOLUTION;
DIFFERENTIAL-EQUATIONS;
CALCULUS;
PROPERTY;
D O I:
10.1016/j.aej.2020.02.028
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
This study advances variable-order (VO) fractional delay differential models in the pan-tograph type introduced in the Caputo sense. A method utilizing the Chebyshev cardinal functions (CCFs) is formulated to find an accurate result. In the proposed scheme, we first expand the solu-tion in terms of the CCFs including unknown coefficients. Then, by inserting this expansion into the problem, employing the VO fractional differentiation operational matrix (OM) and the delay OM, we construct a system with algebraic equations. The generated algebraic systems are mainly sparse due to the cardinality of these functions and it significantly reduces the cost of computation. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).
引用
收藏
页码:2347 / 2354
页数:8
相关论文