A Family of Multivalent Analytic Functions Associated with Srivastava-Tomovski Generalization of the Mittag-Leffler Function

被引:7
作者
Cang, Yi-Ling [1 ]
Liu, Jin-Lin [2 ]
机构
[1] Suqian Coll, Dept Math, Suqian 223800, Peoples R China
[2] Yangzhou Univ, Dept Math, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Analytic function; Srivastava-Wright operator; Srivastava-Tomovski generalization of the Mittag-Leffler function; subordination; Hadamard product (convolution); convex univalent; Fekete-Szego inequality; FRACTIONAL DERIVATIVE OPERATORS; OPERATIONAL CALCULUS;
D O I
10.2298/FIL1813619C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce an operator associated with Srivastava-Tomovski generalization of the Mittag-Leffler function. By using this operator and the virtue of differential subordination, we define a new family of multivalent analytic functions. Some novel properties such as inclusion relation, Hadamard product and the Fekete-Szego inequality of this new family are discussed.
引用
收藏
页码:4619 / 4625
页数:7
相关论文
共 20 条
[11]   Generalized convolution properties based on the modified Mittag-Leffler function [J].
Srivastava, H. M. ;
Kilicman, Adem ;
Abdulnaby, Zainab E. ;
Ibrahim, Rabha W. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08) :4284-4294
[12]  
Srivastava HM, 2017, TWMS J PURE APPL MAT, V8, P112
[13]   Remarks on some families of fractional-order differential equations [J].
Srivastava, H. M. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (07) :560-564
[14]  
Srivastava HM, 2016, TWMS J PURE APPL MAT, V7, P123
[15]  
Srivastava HM, 2007, APPL ANAL DISCR MATH, V1, P56
[16]   Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel [J].
Srivastava, H. M. ;
Tomovski, Zivorad .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) :198-210
[17]  
Srivastava H. M., 2017, Appl. Math. Inf. Sci., V11, P635, DOI DOI 10.18576/amis/110301
[18]  
Srivastava H. M., 1968, Yokohama Math. J, V16, P77
[19]   Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity [J].
Tomovski, Zivorad ;
Pogany, Tibor K. ;
Srivastava, H. M. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (12) :5437-5454
[20]   Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions [J].
Tomovski, Zivorad ;
Hilfer, Rudolf ;
Srivastava, H. M. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (11) :797-814