A Family of Multivalent Analytic Functions Associated with Srivastava-Tomovski Generalization of the Mittag-Leffler Function

被引:7
作者
Cang, Yi-Ling [1 ]
Liu, Jin-Lin [2 ]
机构
[1] Suqian Coll, Dept Math, Suqian 223800, Peoples R China
[2] Yangzhou Univ, Dept Math, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Analytic function; Srivastava-Wright operator; Srivastava-Tomovski generalization of the Mittag-Leffler function; subordination; Hadamard product (convolution); convex univalent; Fekete-Szego inequality; FRACTIONAL DERIVATIVE OPERATORS; OPERATIONAL CALCULUS;
D O I
10.2298/FIL1813619C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce an operator associated with Srivastava-Tomovski generalization of the Mittag-Leffler function. By using this operator and the virtue of differential subordination, we define a new family of multivalent analytic functions. Some novel properties such as inclusion relation, Hadamard product and the Fekete-Szego inequality of this new family are discussed.
引用
收藏
页码:4619 / 4625
页数:7
相关论文
共 20 条
[1]   Some Applications of Mittag-Leffler Function in the Unit Disk [J].
Attiya, Adel A. .
FILOMAT, 2016, 30 (07) :2075-2081
[2]   Certain geometric properties of the Mittag-Leffler functions [J].
Bansal, D. ;
Prajapat, J. K. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (03) :338-350
[3]   A Mittag-Leffler-type function of two variables [J].
Garg, Mridula ;
Manohar, Pratibha ;
Kalla, S. L. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (11) :934-944
[4]   Criteria for univalence of the Dziok-Srivastava and the Srivastava-Wright operators in the class A [J].
Kiryakova, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :883-892
[5]   Notes on Jung-Kim-Srivastava integral operator [J].
Liu, JL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) :96-103
[6]  
Ma W., 1992, P C COMPL AN, P157
[7]  
MILLER SS, 1981, MICH MATH J, V28, P157
[8]  
Mittag-Leffler G, 1903, CR HEBD ACAD SCI, V137, P554
[9]  
Ruscheweyh S., 1982, CONVOLUTIONS GEOMETR
[10]  
Srivastava HM, 2017, J NONLINEAR VAR ANAL, V1, P61