ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways

被引:129
作者
Pontes Oliveira de Almeida, Arthur Jose [1 ]
Pinheiro Lucio de Oliveira, Julio Cesar [1 ]
da Silva Pontes, Larisse Virgolino [1 ]
de Souza Junior, Javanyr Frederico [1 ]
Felisberto Goncalves, Tays Amanda [1 ]
Dantas, Sabine Helena [1 ]
de Almeida Feitosa, Mathania Silva [1 ]
Silva, Antonia Oliveira [2 ]
de Medeiros, Isac Almeida [1 ]
机构
[1] Univ Fed Paraiba, Ctr Ciencias Saude, Dept Ciencias Farmaceut, Cidade Univ Campus 1,Caixa Postal 5009, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Paraiba, Ctr Ciencias Saude, Programa Posgrad Enfermagem, Cidade Univ Campus 1,Caixa Postal 5009, BR-58051970 Joao Pessoa, Paraiba, Brazil
关键词
THIOREDOXIN-INTERACTING PROTEIN; OXIDATIVE STRESS; HYDROGEN-PEROXIDE; GLUTATHIONE-PEROXIDASE; AUTOPHAGIC DEGRADATION; S-GLUTATHIONYLATION; KEAP1-NRF2; SYSTEM; HYPOCHLOROUS ACID; REDOX HOMEOSTASIS; NADPH OXIDASE;
D O I
10.1155/2022/1225578
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Reactive oxygen species (ROS) are bioproducts of cellular metabolism. There is a range of molecules with oxidizing properties known as ROS. Despite those molecules being implied negatively in aging and numerous diseases, their key role in cellular signaling is evident. ROS control several biological processes such as inflammation, proliferation, and cell death. The redox signaling underlying these cellular events is one characteristic of the new generation of scientists aimed at defining the role of ROS in the cellular environment. The control of redox potential, which includes the balance of the sources of ROS and the antioxidant system, implies an important target for understanding the cells' fate derived from redox signaling. In this review, we summarized the chemical, the redox balance, the signaling, and the implications of ROS in biological aging.
引用
收藏
页数:23
相关论文
共 290 条
[11]   The impact of oxidative DNA damage and stress on telomere homeostasis [J].
Barnes, Ryan P. ;
Fouquerel, Elise ;
Opresko, Patricia L. .
MECHANISMS OF AGEING AND DEVELOPMENT, 2019, 177 :37-45
[12]   Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration [J].
Bartesaghi, Silvina ;
Radi, Rafael .
REDOX BIOLOGY, 2018, 14 :618-625
[13]   Pro-Aging Effects of Xanthine Oxidoreductase Products [J].
Battelli, Maria Giulia ;
Bortolotti, Massimo ;
Bolognesi, Andrea ;
Polito, Letizia .
ANTIOXIDANTS, 2020, 9 (09) :1-16
[14]   The role of xanthine oxidoreductase and uric acid in metabolic syndrome [J].
Battelli, Maria Giulia ;
Bortolotti, Massimo ;
Polito, Letizia ;
Bolognesi, Andrea .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2018, 1864 (08) :2557-2565
[15]   Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects [J].
Battelli, Maria Giulia ;
Polito, Letizia ;
Bortolotti, Massimo ;
Bolognesi, Andrea .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2016, 2016
[16]   Tetrahydrobiopterin in Cardiovascular Health and Disease [J].
Bendall, Jennifer K. ;
Douglas, Gillian ;
McNeill, Eileen ;
Channon, Keith M. ;
Crabtree, Mark J. .
ANTIOXIDANTS & REDOX SIGNALING, 2014, 20 (18) :3040-3077
[17]   Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways [J].
Benhar, Moran .
ANTIOXIDANTS, 2020, 9 (04)
[18]   Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress [J].
Benhar, Moran .
FREE RADICAL BIOLOGY AND MEDICINE, 2018, 127 :160-164
[19]   A systematic review of p53 regulation of oxidative stress in skeletal muscle [J].
Beyfuss, Kaitlyn ;
Hood, David A. .
REDOX REPORT, 2018, 23 (01) :100-117
[20]  
Bhargava S, 2019, OXIDATIVE STRESS IN HEART DISEASES, P141, DOI 10.1007/978-981-13-8273-4_6