Optimizing Thermoelectric Power Factor in p-Type Hydrogenated Nano-crystalline Silicon Thin Films by Varying Carrier Concentration

被引:7
作者
Acosta, E. [1 ]
Smirnov, V. [2 ]
Szabo, P. S. B. [1 ]
Buckman, J. [3 ]
Bennett, N. S. [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Nanomat Lab, Edinburgh, Midlothian, Scotland
[2] Forschungszentrum Julich, IEK Photovolta 5, D-52425 Julich, Germany
[3] Heriot Watt Univ, Inst Petr Engn, Ctr Environm Scanning Electron Microscopy, Edinburgh, Midlothian, Scotland
关键词
Thermoelectric; nano-crystalline silicon; thin films; carrier concentration; annealing; power factor; NANOSTRUCTURED BULK SILICON; MICROCRYSTALLINE SILICON; THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; RAMAN-SPECTROSCOPY; VOLUME FRACTION; SCATTERING; BORON; PERFORMANCE; PERCOLATION;
D O I
10.1007/s11664-019-07036-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most approaches to silicon-based thermoelectrics are focused on reducing the lattice thermal conductivity with minimal deterioration of the thermoelectric power factor. This study investigates the potential of p-type hydrogenated nano-crystalline silicon thin films (c-Si:H), produced by plasma-enhanced chemical vapor deposition, for thermoelectric applications. We adopt this heterogeneous material structure, known to have a very low thermal conductivity (similar to 1W/mK), in order to obtain an optimized power factor through controlled variation of carrier concentration drawing on stepwise annealing. This approach achieves a best thermoelectric power factor of similar to 3x10(-4)W/mK(2) at a carrier concentration of similar to 4.5x10(19)cm(3) derived from a significant increase of electrical conductivity similar to x8, alongside a less pronounced reduction of the Seebeck coefficient, while retaining a low thermal conductivity. These thin films have a good thermal and mechanical stability up to 500 degrees C with appropriate adhesion at the film/substrate interface.
引用
收藏
页码:2085 / 2094
页数:10
相关论文
共 66 条
[41]   SEEBECK AND PIEZORESISTANCE EFFECTS IN AMORPHOUS MICROCRYSTALLINE MIXED-PHASE SILICON FILMS AND APPLICATIONS TO POWER SENSORS AND STRAIN-GAUGES [J].
NISHIDA, S ;
KONAGAI, M ;
TAKAHASHI, K .
THIN SOLID FILMS, 1984, 112 (01) :7-16
[42]   DEPOSITION OF PHOSPHORUS DOPED MICROCRYSTALLINE SILICON BELOW 70-DEGREES-C AT 70 MHZ [J].
PRASAD, K ;
FINGER, F ;
DUBAIL, S ;
SHAH, A ;
SCHUBERT, M .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 137 :681-684
[43]   THE ONE PHONON RAMAN-SPECTRUM IN MICROCRYSTALLINE SILICON [J].
RICHTER, H ;
WANG, ZP ;
LEY, L .
SOLID STATE COMMUNICATIONS, 1981, 39 (05) :625-629
[44]  
Rowe D.M., 2006, Thermoelectrics Handbook: Macro to Nano
[45]  
Schicho S., 2011, AMORPHOUS MICROCRYST, P141
[46]   Thermopower and Hall-effect investigations of microcrystalline silicon films [J].
Sellmer, C. ;
Bronger, T. ;
Beyer, W. ;
Carius, R. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 3-4, 2010, 7 (3-4) :670-673
[47]   ELECTRICAL PROPERTIES OF POLYCRYSTALLINE SILICON FILMS [J].
SETO, JYW .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (12) :5247-5254
[48]   Electronic and optical properties of hydrogenated microcrystalline silicon: review [J].
Shimakawa, K .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2004, 15 (02) :63-67
[49]   Percolation-controlled electronic properties in microcrystalline silicon: effective medium approach [J].
Shimakawa, K .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 :223-226
[50]   Microcrystalline silicon n-i-p solar cells prepared with microcrystalline silicon oxide (μc-SiOx:H) n-layer [J].
Smirnov, Vladimir ;
Boettler, Wanjiao ;
Lambertz, Andreas ;
Wang, Haiyan ;
Carius, Reinhard ;
Finger, Friedhelm .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 3-4, 2010, 7 (3-4) :1053-1056