Optimizing Thermoelectric Power Factor in p-Type Hydrogenated Nano-crystalline Silicon Thin Films by Varying Carrier Concentration

被引:7
作者
Acosta, E. [1 ]
Smirnov, V. [2 ]
Szabo, P. S. B. [1 ]
Buckman, J. [3 ]
Bennett, N. S. [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Nanomat Lab, Edinburgh, Midlothian, Scotland
[2] Forschungszentrum Julich, IEK Photovolta 5, D-52425 Julich, Germany
[3] Heriot Watt Univ, Inst Petr Engn, Ctr Environm Scanning Electron Microscopy, Edinburgh, Midlothian, Scotland
关键词
Thermoelectric; nano-crystalline silicon; thin films; carrier concentration; annealing; power factor; NANOSTRUCTURED BULK SILICON; MICROCRYSTALLINE SILICON; THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; RAMAN-SPECTROSCOPY; VOLUME FRACTION; SCATTERING; BORON; PERFORMANCE; PERCOLATION;
D O I
10.1007/s11664-019-07036-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most approaches to silicon-based thermoelectrics are focused on reducing the lattice thermal conductivity with minimal deterioration of the thermoelectric power factor. This study investigates the potential of p-type hydrogenated nano-crystalline silicon thin films (c-Si:H), produced by plasma-enhanced chemical vapor deposition, for thermoelectric applications. We adopt this heterogeneous material structure, known to have a very low thermal conductivity (similar to 1W/mK), in order to obtain an optimized power factor through controlled variation of carrier concentration drawing on stepwise annealing. This approach achieves a best thermoelectric power factor of similar to 3x10(-4)W/mK(2) at a carrier concentration of similar to 4.5x10(19)cm(3) derived from a significant increase of electrical conductivity similar to x8, alongside a less pronounced reduction of the Seebeck coefficient, while retaining a low thermal conductivity. These thin films have a good thermal and mechanical stability up to 500 degrees C with appropriate adhesion at the film/substrate interface.
引用
收藏
页码:2085 / 2094
页数:10
相关论文
共 66 条
[1]   GE-SI THERMOELECTRIC POWER GENERATOR [J].
ABELES, B ;
COHEN, RW .
JOURNAL OF APPLIED PHYSICS, 1964, 35 (01) :247-&
[2]   Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics [J].
Acosta, E. ;
Wight, N. M. ;
Smirnov, V. ;
Buckman, J. ;
Bennett, N. S. .
JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (06) :3077-3084
[3]  
[Anonymous], TECHNICAL REPORT
[4]  
ARMIGLIATO A, 1977, J ELECTROCHEM SOC, V124, pC117
[5]   Thermal conductivity of hydrogenated amorphous silicon [J].
Attaf, N ;
Aida, MS ;
Hadjeris, L .
SOLID STATE COMMUNICATIONS, 2001, 120 (12) :525-530
[6]   Efficient thermoelectric performance in silicon nano-films by vacancy-engineering [J].
Bennett, Nick S. ;
Wight, Neil M. ;
Popuri, Srinivasa R. ;
Bos, Jan-Willem G. .
NANO ENERGY, 2015, 16 :350-356
[7]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[8]   Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 °C [J].
Bronsveld, P. C. P. ;
van der Wagt, H. J. ;
Rath, J. K. ;
Schropp, R. E. I. ;
Beyer, W. .
THIN SOLID FILMS, 2007, 515 (19) :7495-7498
[9]   EXPERIMENTAL-DETERMINATION OF THE NANOCRYSTALLINE VOLUME FRACTION IN SILICON THIN-FILMS FROM RAMAN-SPECTROSCOPY [J].
BUSTARRET, E ;
HACHICHA, MA ;
BRUNEL, M .
APPLIED PHYSICS LETTERS, 1988, 52 (20) :1675-1677
[10]   Nanostructured Bulk Silicon as an Effective Thermoelectric Material [J].
Bux, Sabah K. ;
Blair, Richard G. ;
Gogna, Pawan K. ;
Lee, Hohyun ;
Chen, Gang ;
Dresselhaus, Mildred S. ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (15) :2445-2452