Quasi-Cyclic Asymptotically Regular LDPC Codes

被引:0
作者
Mitchell, David G. M. [1 ]
Smarandache, Roxana [2 ]
Lentmaier, Michael [3 ]
Costello, Daniel J., Jr. [1 ]
机构
[1] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA USA
[3] Tech Univ Dresden, Vodafone Chair Mobile Commun Syst, Dresden, Germany
来源
2010 IEEE INFORMATION THEORY WORKSHOP (ITW) | 2010年
关键词
PARITY-CHECK CODES; MATRICES; BLOCK;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Families of asymptotically regular LDPC block code ensembles can be formed by terminating (J, K)-regular protograph-based LDPC convolutional codes. By varying the termination length, we obtain a large selection of LDPC block code ensembles with varying code rates, minimum distance that grows linearly with block length, and capacity approaching iterative decoding thresholds, despite the fact that the terminated ensembles are almost regular. In this paper, we investigate the properties of the quasi-cyclic (QC) members of such an ensemble. We show that an upper bound on the minimum Hamming distance of members of the QC sub-ensemble can be improved by careful choice of the component protographs used in the code construction. Further, we show that the upper bound on the minimum distance can be improved by using arrays of circulants in a graph cover of the protograph.
引用
收藏
页数:5
相关论文
共 17 条
[11]  
Lentmaier M., 2010, P INF THEOR APP WORK
[12]   Efficient encoding of quasi-cyclic low-density parity-check codes [J].
Li, ZW ;
Chen, L ;
Zeng, LQ ;
Lin, S ;
Fong, WH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2006, 54 (01) :71-81
[13]  
MacKay DJC, 2001, IMA VOL MATH APPL, V123, P113
[14]  
Mitchell D. G. M., 2008, P IEEE INT S INF THE
[15]  
Smarandache R., IEEE T INFO IN PRESS
[16]   LDPC block and convolutional codes based on circulant matrices [J].
Tanner, RM ;
Sridhara, D ;
Sridharan, A ;
Fuja, TE ;
Costello, DJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :2966-2984
[17]  
Tavares M. F. N., 2010, THESIS