Spectral and Fredholm properties of perturbed differential Euler operators

被引:0
作者
Erovenko, VA [1 ]
机构
[1] Belarusian State Univ, Minsk 220050, BELARUS
来源
DOKLADY AKADEMII NAUK BELARUSI | 1998年 / 42卷 / 05期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper describes the essential spectra of Euler differential operators and some of their singular perturbations in spaces L-p(a, infinity), 0 < a < infinity, 1 less than or equal to p less than or equal to infinity.
引用
收藏
页码:40 / 44
页数:5
相关论文
共 14 条
  • [1] ESSENTIAL SPECTRUM OF A CLASS OF ORDINARY DIFFERENTIAL OPERATORS
    BALSLEV, E
    GAMELIN, TW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (03) : 755 - &
  • [2] BALSLEV E, 1966, MATH SCAND, V19, P193
  • [3] Edmunds D. E., 1987, Spectral Theory and Differential Operators
  • [4] EROVENKO VA, 1994, DOKL AKAD NAUK BELAR, V38, P21
  • [5] Erovenko VA, 1998, DOKL AKAD NAUK BELAR, V42, P13
  • [6] EROVENKO VA, 1996, DOKL AKAD NAUK BELAR, V40, P39
  • [7] EROVENKO VA, 1996, DIFF URAVN, V32, P1162
  • [8] EROVENKO VA, 1997, DIFF URAVN, V33, P867
  • [9] EROVENKO VA, 1996, DIFF URAVN, V32, P1024
  • [10] LOWER BOUNDS FOR THE SPECTRUM OF ORDINARY DIFFERENTIAL-OPERATORS
    EVANS, WD
    KWONG, MK
    ZETTL, A
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 48 (01) : 123 - 155