Estimation of periodic-like motions of chaotic evolutions using detected unstable periodic patterns

被引:7
作者
Xu, DL
Li, ZG
Bishop, SR
Galvanetto, U
机构
[1] Nanyang Technol Univ, Sch Mech & Prod Engn, Dept Engn Mech, Singapore 639798, Singapore
[2] UCL, Ctr Nonlinear Dynam & Applicat, London WC1 6BT, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2BY, England
关键词
pattern; chaos; estimation; unstable periodic orbits;
D O I
10.1016/S0167-8655(01)00100-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce an approach to detect cyclical patterns embedded within chaotic data and make use of the detected patterns to estimate periodic-like motions in a chaotic process. A chaotic attractor contains many unstable periodic orbits (UPOs). The UPOs are hidden cyclical patterns that dominate the dynamical evolution of the system. Knowledge of UPOs can be used for estimating the trends of chaotic evolutions. A numerical experiment is conducted to illustrate an application on the business cycle detection. (C) 2002 Elsevier Science; B.V. All rights reserved.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 1989, BUSINESS CYCLE THEOR
[2]   Control of chaos in noisy flows [J].
Bishop, SR ;
Xu, DL .
PHYSICAL REVIEW E, 1996, 54 (04) :3204-3210
[3]   Local optimal metrics and nonlinear modeling of chaotic time series [J].
Garcia, P ;
Jimenez, J ;
Marcano, A ;
Moleiro, F .
PHYSICAL REVIEW LETTERS, 1996, 76 (09) :1449-1452
[4]   UNSTABLE PERIODIC-ORBITS AND THE DIMENSIONS OF MULTIFRACTAL CHAOTIC ATTRACTORS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1988, 37 (05) :1711-1724
[5]   A MODEL OF THE TRADE CYCLE [J].
Kaldor, N. .
ECONOMIC JOURNAL, 1940, 50 (197) :78-92
[6]   Regularized local linear prediction of chaotic time series [J].
Kugiumtzis, D ;
Lingjaerde, OC ;
Christophersen, N .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (3-4) :344-360
[7]   CHARACTERIZATION OF AN EXPERIMENTAL STRANGE ATTRACTOR BY PERIODIC-ORBITS [J].
LATHROP, DP ;
KOSTELICH, EJ .
PHYSICAL REVIEW A, 1989, 40 (07) :4028-4031
[8]  
Lorenz H.W., 1993, Nonlinear Dynamical Economics and Chaotic Motion, VVolume 334
[9]  
Takens F., 1981, LECT NOTES MATH, V1980, P366, DOI [DOI 10.1007/BFB0091924, 10.1007/BFb0091924]
[10]   Self-locating control of chaotic systems using Newton algorithm [J].
Xu, D ;
Bishop, SR .
PHYSICS LETTERS A, 1996, 210 (4-5) :273-278