Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness

被引:3
作者
Alotta, Gioacchino [1 ]
Bologna, Emanuela [2 ]
Zingales, Massimiliano [2 ]
机构
[1] Univ Mediterranea Reggio Calabria, Dipartimento Ingn Civile Energia Ambiente & Mat, I-89124 Reggio Di Calabria, Italy
[2] Dipartimento Ingn, Viale Sci Eq 8, I-90128 Palermo, Italy
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 04期
关键词
fractional calculus; non-linear springpot; mechanical hierarchy; RELAXATION FUNCTIONS; STRESS-RELAXATION; MODEL; CALCULUS; LAW; EQUATIONS; TRANSPORT; CREEP;
D O I
10.3390/sym12040673
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-local time evolution of material stress/strain is often referred to as material hereditariness. In this paper, the widely used non-linear approach to single integral time non-local mechanics named quasi-linear approach is proposed in the context of fractional differential calculus. The non-linear model of the springpot is defined in terms of a single integral with separable kernel endowed with a non-linear transform of the state variable that allows for the use of Boltzmann superposition. The model represents a self-similar hierarchy that allows for a time-invariance as the result of the application of the conservation laws at any resolution scale. It is shown that the non-linear springpot possess an equivalent mechanical hierarchy in terms of a functionally-graded elastic column resting on viscous dashpots with power-law decay of the material properties. Some numerical applications are reported to show the capabilities of the proposed model.
引用
收藏
页数:15
相关论文
共 60 条
  • [31] VISCOELASTIC RELAXATION FUNCTIONS COMPATIBLE WITH THERMODYNAMICS
    FABRIZIO, M
    MORRO, A
    [J]. JOURNAL OF ELASTICITY, 1988, 19 (01) : 63 - 75
  • [32] THERMODYNAMIC RESTRICTIONS ON RELAXATION FUNCTIONS IN LINEAR VISCOELASTICITY
    FABRIZIO, M
    MORRO, A
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1985, 12 (02) : 101 - 105
  • [33] Fabrizio M, 1992, MATH PROBLEMS LINEAR, V12
  • [34] Findley W. N., 2013, CREEP RELAXATION NON, pNew York
  • [35] Fung YC, 1981, BIOMECHANICS MECH PR
  • [36] A method of analyzing experimental results obtained from elasto-viscous bodies
    Gemant, Andrew
    [J]. PHYSICS-A JOURNAL OF GENERAL AND APPLIED PHYSICS, 1936, 7 (01): : 311 - 317
  • [37] Non-linear problems of fractional calculus in modeling of mechanical systems
    Grzesikiewicz, Wieslaw
    Wakulicz, Andrzej
    Zbiciak, Artur
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 70 : 90 - 98
  • [38] ON ENERGIES FOR NONLINEAR VISCOELASTIC MATERIALS OF SINGLE-INTEGRAL TYPE
    GURTIN, ME
    HRUSA, WJ
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (02) : 381 - 392
  • [39] Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams
    He, X. Q.
    Rafiee, M.
    Mareishi, S.
    Liew, K. M.
    [J]. COMPOSITE STRUCTURES, 2015, 131 : 1111 - 1123
  • [40] Modeling of viscoelastic and nonlinear material properties of liver tissue using fractional calculations
    Kobayashi, Yo
    Kato, Atsushi
    Watanabe, Hiroki
    Hoshi, Takeharu
    Kawamura, Kazuya
    Fujie, Masakatsu G.
    [J]. Journal of Biomechanical Science and Engineering, 2012, 7 (02): : 177 - 187