Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness

被引:3
作者
Alotta, Gioacchino [1 ]
Bologna, Emanuela [2 ]
Zingales, Massimiliano [2 ]
机构
[1] Univ Mediterranea Reggio Calabria, Dipartimento Ingn Civile Energia Ambiente & Mat, I-89124 Reggio Di Calabria, Italy
[2] Dipartimento Ingn, Viale Sci Eq 8, I-90128 Palermo, Italy
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 04期
关键词
fractional calculus; non-linear springpot; mechanical hierarchy; RELAXATION FUNCTIONS; STRESS-RELAXATION; MODEL; CALCULUS; LAW; EQUATIONS; TRANSPORT; CREEP;
D O I
10.3390/sym12040673
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-local time evolution of material stress/strain is often referred to as material hereditariness. In this paper, the widely used non-linear approach to single integral time non-local mechanics named quasi-linear approach is proposed in the context of fractional differential calculus. The non-linear model of the springpot is defined in terms of a single integral with separable kernel endowed with a non-linear transform of the state variable that allows for the use of Boltzmann superposition. The model represents a self-similar hierarchy that allows for a time-invariance as the result of the application of the conservation laws at any resolution scale. It is shown that the non-linear springpot possess an equivalent mechanical hierarchy in terms of a functionally-graded elastic column resting on viscous dashpots with power-law decay of the material properties. Some numerical applications are reported to show the capabilities of the proposed model.
引用
收藏
页数:15
相关论文
共 60 条
  • [11] Behnke R., 2011, P APPL MATH MECH, V11, P353, DOI [10.1002/pamm.201110168, DOI 10.1002/PAMM.201110168]
  • [12] BLAIR GWS, 1949, PHILOS MAG, V40, P80
  • [13] A non-linear stochastic approach of ligaments and tendons fractional-order hereditariness
    Bologna, E.
    Lopomo, N.
    Marchiori, G.
    Zingales, M.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2020, 60 (60)
  • [14] Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery
    Bologna, E.
    Graziano, F.
    Deseri, L.
    Zingales, M.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 115 : 61 - 67
  • [15] Stability analysis of Beck's column over a fractional-order hereditary foundation
    Bologna, E.
    Zingales, M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2218):
  • [16] Bologna E., 2019, P AIM 2019 24 C ASS
  • [17] Bologna E., 2020, FRACTIONAL ORDER NON
  • [18] Caputo M., 2015, Prog. Fract. Differ. Appl, V2, P73, DOI DOI 10.12785/PFDA/010201
  • [19] Cottone G., 2009, Lecture Notes in Electrical Engineering, P389, DOI [10.1007/978-0-387-76483-2_33, DOI 10.1007/978-0-387-76483-2_33]
  • [20] Elastic waves propagation in 1D fractional non-local continuum
    Cottone, Giulio
    Di Paola, Mario
    Zingales, Massimiliano
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 42 (02) : 95 - 103