The global Minmax k-means algorithm

被引:34
作者
Wang, Xiaoyan [1 ]
Bai, Yanping [2 ]
机构
[1] North Univ China, Sch Informat & Commun Engn, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Sci, Taiyuan 030051, Peoples R China
来源
SPRINGERPLUS | 2016年 / 5卷
基金
中国国家自然科学基金;
关键词
k-Means; Clustering; MinMax k-means; Global k-means;
D O I
10.1186/s40064-016-3329-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The global k-means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k-means to minimize the sum of the intra-cluster variances. However the global k-means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k-means algorithm. In this paper, we modified the global k-means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k-means clustering error method to global k-means algorithm to overcome the effect of bad initialization, proposed the global Minmax k-means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k-means algorithm, the global k-means algorithm and the MinMax k-means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
引用
收藏
页数:15
相关论文
共 22 条
[21]   Survey of clustering algorithms [J].
Xu, R ;
Wunsch, D .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (03) :645-678
[22]   Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal [J].
Zang, Xian ;
Vista, Felipe P. ;
Chong, Kil To .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2014, 15 (07) :551-563