The global Minmax k-means algorithm

被引:34
作者
Wang, Xiaoyan [1 ]
Bai, Yanping [2 ]
机构
[1] North Univ China, Sch Informat & Commun Engn, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Sci, Taiyuan 030051, Peoples R China
来源
SPRINGERPLUS | 2016年 / 5卷
基金
中国国家自然科学基金;
关键词
k-Means; Clustering; MinMax k-means; Global k-means;
D O I
10.1186/s40064-016-3329-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The global k-means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k-means to minimize the sum of the intra-cluster variances. However the global k-means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k-means algorithm. In this paper, we modified the global k-means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k-means clustering error method to global k-means algorithm to overcome the effect of bad initialization, proposed the global Minmax k-means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k-means algorithm, the global k-means algorithm and the MinMax k-means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
引用
收藏
页数:15
相关论文
共 22 条
[1]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[2]   Modified global k-means algorithm for minimum sum-of-squares clustering problems [J].
Bagirov, Adil M. .
PATTERN RECOGNITION, 2008, 41 (10) :3192-3199
[3]   Fast modified global k-means algorithm for incremental cluster construction [J].
Bagirov, Adil M. ;
Ugon, Julien ;
Webb, Dean .
PATTERN RECOGNITION, 2011, 44 (04) :866-876
[4]   Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres [J].
Banerjee, A ;
Ghosh, J .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (03) :702-719
[5]  
Berkhin P, 2006, GROUPING MULTIDIMENSIONAL DATA: RECENT ADVANCES IN CLUSTERING, P25
[6]   DETERMINISTIC INITIALIZATION OF THE K-MEANS ALGORITHM USING HIERARCHICAL CLUSTERING [J].
Celebi, M. Emre ;
Kingravi, Hassan A. .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26 (07)
[7]   A comparative study of efficient initialization methods for the k-means clustering algorithm [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Vela, Patricio A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (01) :200-210
[8]  
Celebi ME., 2015, PARTITIONAL CLUSTERI, V79-98
[9]  
Eslamnezhad M, 2014, 2014 7TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), P804, DOI 10.1109/ISTEL.2014.7000814
[10]   k′-Means algorithms for clustering analysis with frequency sensitive discrepancy metrics [J].
Fang, Chonglun ;
Jin, Wei ;
Ma, Jinwen .
PATTERN RECOGNITION LETTERS, 2013, 34 (05) :580-586