An efficient and recyclable 3D printed α-Al2O3 catalyst for the multicomponent assembly of bioactive heterocycles

被引:81
作者
Azuaje, Jhonny [1 ,2 ,4 ]
Tubio, Carmen R. [3 ]
Escalante, Luz [1 ,2 ]
Gomez, Monica [3 ]
Guitian, Francisco [3 ]
Coelho, Alberto [1 ,2 ,4 ]
Caamano, Olga [2 ,4 ]
Gil, Alvaro [3 ]
Sotelo, Eddy [1 ,2 ,4 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Quim Biol & Mat Mol CIQUS, E-15782 Santiago De Compostela, Spain
[2] Univ Santiago de Compostela, Fac Farm, Dept Quim Organ, E-15782 Santiago De Compostela, Spain
[3] Univ Santiago de Compostela, Inst Ceram, E-15782 Santiago De Compostela, Spain
[4] Univ Santiago de Compostela, IFI, E-15782 Santiago De Compostela, Spain
关键词
3D printing; Al2O3; Multicomponent reactions; 1,4-Dihydropyrimidines; 3,4-Dihydropyrimidin-2(1H)-ones; BIGINELLI DIHYDROPYRIMIDINE SYNTHESIS; GREEN CHEMISTRY; GAMMA-ALUMINA; 4-COMPONENT SYNTHESIS; ETHANOL DEHYDRATION; MESOPOROUS ALUMINA; LEWIS ACIDITY; SOLVENT-FREE; ONE-POT; SURFACE;
D O I
10.1016/j.apcata.2016.11.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A catalytic methodology is reported that enables the efficient, operationally simple and environmentally friendly synthesis of diverse 1,4-dihydropyridines and 3,4-dihydropyrimidin-2(1H)-ones, including some relevant drugs and pharmacologically active derivatives. This strategy is based on the use of a 3D printed Al2O3 woodpile material that was sintered to generate a rigid structure with controlled porosity and noteworthy catalytic performance. The 3D printed Al2O3 catalyst exhibits remarkable efficacy as a Lewis acid in Biginelli and Hantzsch reactions and it can be recovered and reused ten times without any decrease in the activity. Remarkable E factors, excellent recyclability and scalability, broad substrate scope, short reaction times, excellent yields, solvent-free conditions and easy isolation procedures are key features of this methodology. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 85 条
  • [1] Facts, Presumptions, and Myths on the Solvent-Free and Catalyst-Free Biginelli Reaction. What is Catalysis for?
    Alvim, Haline G. O.
    Lima, Tatiani B.
    de Oliveira, Aline L.
    de Oliveira, Heibbe C. B.
    Silva, Fabricio M.
    Gozzo, Fabio C.
    Souza, Roberto Y.
    da Silva, Wender A.
    Neto, Brenno A. D.
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 2014, 79 (08) : 3383 - 3397
  • [2] Poly(ethylene)glycol/AlCl3 as a new and efficient system for multicomponent Biginelli-type synthesis of pyrimidinone derivatives
    Amoozadeh, Ali
    Rahmani, Salman
    Nemati, Firouzeh
    [J]. HETEROCYCLIC COMMUNICATIONS, 2013, 19 (01) : 69 - 73
  • [3] Anastas P., 1998, GREEN CHEM THEORY PR
  • [4] The role of catalysis in the design, development, and implementation of green chemistry
    Anastas, PT
    Bartlett, LB
    Kirchhoff, MM
    Williamson, TC
    [J]. CATALYSIS TODAY, 2000, 55 (1-2) : 11 - 22
  • [5] Multiple-component condensation strategies for combinatorial library synthesis
    Armstrong, RW
    Combs, AP
    Tempest, PA
    Brown, SD
    Keating, TA
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 1996, 29 (03) : 123 - 131
  • [6] Neutral alumina catalysed synthesis of 3-nitro-1,2-dihydroquinolines and 3-nitrochromenes, under solvent-free conditions, via tandem process
    Ballini, R
    Bosica, G
    Fiorini, D
    Palmieri, A
    [J]. GREEN CHEMISTRY, 2005, 7 (12) : 825 - 827
  • [7] ALUMINUM-INDUCED NEUROTOXICITY - ALTERATIONS IN MEMBRANE-FUNCTION AT THE BLOOD-BRAIN-BARRIER
    BANKS, WA
    KASTIN, AJ
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 1989, 13 (01) : 47 - 53
  • [8] Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface
    Barth, C
    Reichling, M
    [J]. NATURE, 2001, 414 (6859) : 54 - 57
  • [9] Bergmann C, 2013, Dental ceramics
  • [10] Bretherick L., 1990, Bretherick's Handbook of Reactive Chemical Hazards, V4th