Convex C1 extensions of 1-jets from compact subsets of Hilbert spaces

被引:0
作者
Azagra, Daniel [1 ]
Mudarra, Carlos [2 ]
机构
[1] Univ Complutense, Fac Ciencias Matemat, Dept Anal Matemat & Matemat Aplicada, ICMAT CSIC UAM UC3 UCM, Madrid 28040, Spain
[2] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
D O I
10.5802/crmath.62
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X denote a Hilbert space. Given a compact subset K of X and two continuous functions f : K -> R., G : K -> X, we show that a necessary and sufficient condition for the existence of a convex function F epsilon C-1 (X) such that F = f on K and del F = G on K is that the 1-jet (f, G) satisfies: (1) f(x) >= f(y) + < G(y), x - y > for all x, y epsilon K, and (2) if x, y epsilon K and f(x) = f(y) + < G(y), x - y > then G(x) =G(y). We also solve a similar problem for K replaced with an arbitrary bounded subset of X, and for C-1 (X) replaced with the class C-b(1,u) (X) of differentiable functions with uniformly continuous derivatives on bounded subsets of X.
引用
收藏
页码:551 / 556
页数:6
相关论文
共 50 条
[41]   Radius of locally convex subsets in Alexandrov spaces with curvature ≥ 1 and radius &gt; π/2 [J].
Wang, Yusheng ;
Sun, Zhongyang .
FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (02) :417-423
[42]   ON SINGULAR EXTENSIONS OF CONTINUOUS FUNCTIONALS FROM C([0, 1]) TO THE VARIABLE LEBESGUE SPACES [J].
Adamadze, Daviti ;
Kopaliani, Tengiz .
TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (01) :9-13
[43]   Monotone and Convex C1 Hermite Interpolants Generated by a Subdivision Scheme [J].
Constructive Approximation, 2003, 19 :279-298
[44]   Monotone and convex C1 hermite interpolants generated by a subdivision scheme [J].
Merrien, JL ;
Sablonnière, P .
CONSTRUCTIVE APPROXIMATION, 2003, 19 (02) :279-298
[45]   An example of a C1,1 polyconvex function with no differentiable convex representative [J].
Bevan, J .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (01) :11-14
[46]   C1,ALPHA-ISOMETRIC IMMERSIONS OF RIEMANNEAN SPACES [J].
BORISOV, YF .
DOKLADY AKADEMII NAUK SSSR, 1965, 163 (01) :11-&
[47]   C1,γ regularity for fully nonlinear elliptic equations on a convex polyhedron [J].
Wu, Duan ;
Niu, Pengcheng .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (29) :1-10
[48]   A CHARACTERIZATION OF C1-CONVEX SETS IN SOBOLEV SPACES [J].
DALMASO, G ;
DEFRANCESCHI, A ;
VITALI, E .
MANUSCRIPTA MATHEMATICA, 1992, 75 (03) :247-272
[49]   A C1 generic condition for existence of symbolic extensions of volume preserving diffeomorphisms [J].
Catalan, Thiago .
NONLINEARITY, 2012, 25 (12) :3505-3525
[50]   Stochastic optimal control in Hilbert spaces: C1,1 regularity of the value function and optimal synthesis via viscosity solutions [J].
de Feo, Filippo ;
Swiech, Andrzej ;
Wessels, Lukas .
ELECTRONIC JOURNAL OF PROBABILITY, 2025, 30