Convex C1 extensions of 1-jets from compact subsets of Hilbert spaces

被引:0
作者
Azagra, Daniel [1 ]
Mudarra, Carlos [2 ]
机构
[1] Univ Complutense, Fac Ciencias Matemat, Dept Anal Matemat & Matemat Aplicada, ICMAT CSIC UAM UC3 UCM, Madrid 28040, Spain
[2] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
D O I
10.5802/crmath.62
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X denote a Hilbert space. Given a compact subset K of X and two continuous functions f : K -> R., G : K -> X, we show that a necessary and sufficient condition for the existence of a convex function F epsilon C-1 (X) such that F = f on K and del F = G on K is that the 1-jet (f, G) satisfies: (1) f(x) >= f(y) + < G(y), x - y > for all x, y epsilon K, and (2) if x, y epsilon K and f(x) = f(y) + < G(y), x - y > then G(x) =G(y). We also solve a similar problem for K replaced with an arbitrary bounded subset of X, and for C-1 (X) replaced with the class C-b(1,u) (X) of differentiable functions with uniformly continuous derivatives on bounded subsets of X.
引用
收藏
页码:551 / 556
页数:6
相关论文
共 50 条
[31]   ON PROVING C1,α loc-ESTIMATES FOR CONVEX FUNCTIONS [J].
Maldonado, Diego .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (09) :3893-3901
[32]   Construction of a Family of C1 Convex Integro Cubic Splines [J].
Tugal, Zhanlav ;
Renchin-Ochir, Mijiddorj .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (04) :527-538
[33]   Regularity for Robin boundary problems of Laplace equations and Hardy spaces on C1 and (semi-)convex domains [J].
Yang, Sibei ;
Sickel, Winfried ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 279 :198-244
[34]   From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets [J].
Jurco, Branislav .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (12) :2389-2400
[35]   On measure-preserving C1 transformations of compact-open subsets of non-archimedean local fields [J].
Kingsbery, James ;
Levin, Alex ;
Preygel, Anatoly ;
Silva, Cesar E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (01) :61-85
[36]   Approximation of convex contours by cubic, quadratic or convex C1 periodic parametrized splines [J].
Tijini, A ;
Sablonniere, P .
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (06) :729-746
[37]   Shellable weakly compact subsets of C[0,1] [J].
Lopez-Abad, J. ;
Tradacete, P. .
MATHEMATISCHE ANNALEN, 2017, 367 (3-4) :1777-1790
[38]   C1-Weierstrass for compact sets in Hilbert space [J].
Movahedi-Lankarani, H ;
Wells, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (01) :299-320
[39]   On a construction of C1 (Zp) functionals from Zp-extensions of algebraic number fieldsY [J].
All, Timothy ;
Waller, Bradley .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (01) :29-50
[40]   Small C1 actions of semidirect products on compact manifolds [J].
Bonatti, Christian ;
Kim, Sang-Hyun ;
Koberda, Thomas ;
Triestino, Michele .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (06) :3183-3203