New convergence analysis of a class of smoothing Newton-type methods for second-order cone complementarity problem

被引:0
作者
Dong, Li [1 ]
Tang, Jingyong [1 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
second-order cone complementarity problem; smoothing Newton-type method; global convergence; quadratic convergence; REGULARIZATION METHOD;
D O I
10.3934/math.2022970
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a class of smoothing Newton-type methods for solving the second-order cone complementarity problem (SOCCP). The proposed method design is based on a special regularized Chen-Harker-Kanzow-Smale (CHKS) smoothing function. When the solution set of the SOCCP is nonempty, our method has the following convergence properties: (i) it generates a bounded iteration sequence; (ii) the value of the merit function converges to zero; (iii) any accumulation point of the generated iteration sequence is a solution of the SOCCP; (iv) it has the local quadratic convergence rate under suitable assumptions. Some numerical results are reported.
引用
收藏
页码:17612 / 17627
页数:16
相关论文
共 23 条