Impact of atmospheric deposition on the contrasting iron biogeochemistry of the North and South Atlantic Ocean

被引:45
作者
Ussher, Simon J. [1 ,2 ]
Achterberg, Eric P. [3 ]
Powell, Claire [4 ]
Baker, Alex R. [4 ]
Jickells, Tim D. [4 ]
Torres, Ricardo [5 ]
Worsfold, Paul J. [1 ]
机构
[1] Univ Plymouth, Sch Geog Earth & Environm Sci, Plymouth PL4 8AA, Devon, England
[2] Bermuda Inst Ocean Sci, St Georges, Bermuda
[3] Univ Southampton, Natl Oceanog Ctr, Southampton, Hants, England
[4] Univ E Anglia, Sch Environm Sci, Lab Global Marine & Atmospher Chem, Norwich NR4 7TJ, Norfolk, England
[5] Plymouth Marine Lab, Plymouth, Devon, England
关键词
iron; Atlantic Ocean; atmospheric deposition; aluminum; DISSOLVED IRON; PRIMARY PRODUCTIVITY; NITROGEN-FIXATION; WET DEPOSITION; TROPICAL NORTH; FLOW-INJECTION; FI-CL; ALUMINUM; VARIABILITY; NUTRIENTS;
D O I
10.1002/gbc.20056
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dissolved iron (dFe) distributions and atmospheric and vertical subduction fluxes of dFe were determined in the upper water column for two meridional transects of the Atlantic Ocean. The data demonstrate the disparity between the iron biogeochemistry of the North and South Atlantic Ocean and show well-defined gradients of size fractionated iron species in surface waters between geographic provinces. The highest dFe and lowest mixed layer residence times (0.4-2.5 years) were found in the northern tropical and subtropical regions. In contrast, the South Atlantic Gyre had lower dFe concentrations (<0.4 nM) and much longer residence times (>5 years), presumably due to lower atmospheric inputs and more efficient biological recycling of iron in this region. Vertical input fluxes of dFe to surface waters ranged from 20 to 170 nmol m(-2) d(-1) in the North Atlantic and tropical provinces, whereas average fluxes of 6-13 nmol m(-2) d(-1) were estimated for the South Atlantic. Our estimates showed that the variable dFe distribution over the surface Atlantic (<0.1-2.0 nM) predominantly reflected atmospheric Fe deposition fluxes (>50% of total vertical Fe flux to surface waters) rather than upwelling or vertical mixing. This demonstrates the strength of the connection between land-derived atmospheric Fe fluxes and the biological cycling of carbon and nitrogen in the Atlantic Ocean.
引用
收藏
页码:1096 / 1107
页数:12
相关论文
共 50 条
[31]   Abundance, distribution and characteristics of microplastics in the North and South Atlantic Ocean [J].
Andersen, Regitze ;
Harsaae, Astrid Louise ;
Kellner, Antonia ;
Smyth, Abigail ;
Westermann, Tia Amalie Rosenkrantz ;
Green, Mattias ;
Vollertsen, Jes ;
Syberg, Kristian ;
Lorenz, Claudia .
MARINE POLLUTION BULLETIN, 2024, 209
[32]   Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean [J].
Peings, Yannick ;
Magnusdottir, Gudrun .
ENVIRONMENTAL RESEARCH LETTERS, 2014, 9 (03)
[33]   Aerosol water soluble organic matter characteristics over the North Atlantic Ocean: Implications for iron-binding ligands and iron solubility [J].
Wozniak, Andrew S. ;
Shelley, Rachel U. ;
McElhenie, Stephanie D. ;
Landing, William M. ;
Hatcher, Patrick G. .
MARINE CHEMISTRY, 2015, 173 :162-172
[34]   Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity [J].
Martino, M. ;
Hamilton, D. ;
Baker, A. R. ;
Jickells, T. D. ;
Bromley, T. ;
Nojiri, Y. ;
Quack, B. ;
Boyd, P. W. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2014, 28 (07) :712-728
[35]   Dust deposition pulses to the eastern subtropical North Atlantic gyre:: Does ocean's biogeochemistry respond? -: art. no. GB4020 [J].
Neuer, S ;
Torres-Padrón, ME ;
Gelado-Caballero, MD ;
Rueda, MJ ;
Hernández-Brito, J ;
Davenport, R ;
Wefer, G .
GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (04) :1-10
[36]   A tale of two gyres: Contrasting distributions of dissolved cobalt and iron in the Atlantic Ocean during an Atlantic Meridional Transect (AMT-19) [J].
Shelley, Rachel U. ;
Wyatt, Neil J. ;
Tarran, Glenn A. ;
Rees, Andrew P. ;
Worsfold, Paul J. ;
Lohan, Maeve C. .
PROGRESS IN OCEANOGRAPHY, 2017, 158 :52-64
[37]   Ligand Binding Strength Explains the Distribution of Iron in the North Atlantic Ocean [J].
Pham, Anh L. D. ;
Ito, Takamitsu .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (13) :7500-7508
[38]   Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review [J].
Franco, Barbara C. ;
Defeo, Omar ;
Piola, Alberto R. ;
Barreiro, Marcelo ;
Yang, Hu ;
Ortega, Leonardo ;
Gianelli, Ignacio ;
Castello, Jorge P. ;
Vera, Carolina ;
Buratti, Claudio ;
Pajaro, Marcelo ;
Pezzi, Luciano P. ;
Moller, Osmar O. .
CLIMATIC CHANGE, 2020, 162 (04) :2359-2377
[39]   Sedimentary and atmospheric sources of iron around South Georgia, Southern Ocean: a modelling perspective [J].
Borrione, I. ;
Aumont, O. ;
Nielsdottir, M. C. ;
Schlitzer, R. .
BIOGEOSCIENCES, 2014, 11 (07) :1981-2001
[40]   Atmospheric iron supply and marine productivity in the glacial North Pacific Ocean [J].
Burgay, Francois ;
Spolaor, Andrea ;
Gabrieli, Jacopo ;
Cozzi, Giulio ;
Turetta, Clara ;
Vallelonga, Paul ;
Barbante, Carlo .
CLIMATE OF THE PAST, 2021, 17 (01) :491-505