ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries

被引:121
|
作者
Hu, Xiaofei [1 ]
Han, Xiaopeng [1 ]
Hu, Yuxiang [1 ]
Cheng, Fangyi [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Coll Chem,Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300071, Peoples R China
关键词
LITHIUM-OXYGEN BATTERIES; LI-AIR BATTERIES; ALPHA-MNO2; NANORODS; IN-SITU; REDUCTION; PERFORMANCE; ELECTRODE; HYBRID; SURFACE;
D O I
10.1039/c3nr06361e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A sponge-like epsilon-MnO2 nanostructure was synthesized by direct growth of epsilon-MnO2 on Ni foam through a facile electrodeposition route. When applied as a self-supporting, binder-free cathode material for rechargeable nonaqueous lithium-oxygen batteries, the epsilon-MnO2/Ni electrode exhibits considerable high-rate capability (discharge capacity of similar to 6300 mA h g(-1) at a current density of 500 mA g(-1)) and enhanced cyclability (exceeding 120 cycles) without controlling the discharge depth. The superior performance is proposed to be associated with the 3D nanoporous structures and abundant oxygen defects as well as the absence of side reactions related to carbon-based conductive additives and binders.
引用
收藏
页码:3522 / 3525
页数:4
相关论文
共 50 条
  • [1] Microwave assisted synthesis for (sic)-MnO2 nanostructures on Ni foam as for rechargeable Li-O2 battery applications
    Rao, R. Prasada
    Ramasubramanian, B.
    Saritha, R.
    Ramakrishna, S.
    NANO EXPRESS, 2023, 4 (04):
  • [2] An optimization of MnO2 amount in CNT-MnO2 nanocomposite as a high rate cathode catalyst for the rechargeable Li-O2 batteries
    Salehi, Masoumeh
    Shariatinia, Zahra
    ELECTROCHIMICA ACTA, 2016, 188 : 428 - 440
  • [3] Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries
    Zhang, Jian
    Luan, Yanping
    Lyu, Zhiyang
    Wang, Liangjun
    Xu, Leilei
    Yuan, Kaidi
    Pan, Feng
    Lai, Min
    Liu, Zhaolin
    Chen, Wei
    NANOSCALE, 2015, 7 (36) : 14881 - 14888
  • [4] Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries
    Xiaopeng Han
    Fangyi Cheng
    Chengcheng Chen
    Yuxiang Hu
    Jun Chen
    Nano Research, 2015, 8 : 156 - 164
  • [5] Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries
    Han, Xiaopeng
    Cheng, Fangyi
    Chen, Chengcheng
    Hu, Yuxiang
    Chen, Jun
    NANO RESEARCH, 2015, 8 (01) : 156 - 164
  • [6] Oxygen Bubble-Templated Hierarchical Porous ε-MnO2 as a Superior Catalyst for Rechargeable Li-O2 Batteries
    Hu, Xiaofei
    Cheng, Fangyi
    Han, Xiaopeng
    Zhang, Tianran
    Chen, Jun
    SMALL, 2015, 11 (07) : 809 - 813
  • [7] α-MnO2/MWCNTs as an electrocatalyst for rechargeable relatively closed system Li-O2 batteries
    Wu, Min
    Liu, Dechong
    Li, Zhuxin
    Tang, Yu
    Ding, Yajun
    Li, Yuejiao
    Wu, Zhong-Shuai
    Zhao, Hong
    CHEMICAL COMMUNICATIONS, 2021, 57 (89) : 11823 - 11826
  • [8] Synthesis of Ni-Doped TiO2 Microtubes as Cathode Catalyst for Rechargeable Li-O2 Batteries
    Liang, Huagen
    Meng, Xiangwei
    NANO, 2024, 19 (01)
  • [9] A New Concept of an Air-Electrode Catalyst for Li2O2 Decomposition Using MnO2 Nanosheets on Rechargeable Li-O2 Batteries
    Saito, Morihiro
    Kosaka, Shinpei
    Fujinami, Taichi
    Tachikawa, Yusuke
    Shiroishi, Hidenobu
    Streich, D.
    Berg, E. J.
    Novak, Petr
    Seki, Shiro
    ELECTROCHIMICA ACTA, 2017, 252 : 192 - 199
  • [10] TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries
    Bergner, Benjamin J.
    Schuermann, Adrian
    Peppler, Klaus
    Garsuch, Arnd
    Janek, Juergen
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (42) : 15054 - 15064