Barrow fractal entropy and the black hole quasinormal modes

被引:28
作者
Abreu, Everton M. C. [1 ,2 ,3 ]
Ananias Neto, Jorge [2 ]
机构
[1] Univ Fed Rural Rio de Janeiro, Dept Fis, BR-23890971 Seropedica, RJ, Brazil
[2] Univ Fed Juiz de Fora, Dept Fis, BR-36036330 Juiz De Fora, MG, Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, Programa Posgrad Interdisciplinar Fis Aplicada, BR-21941972 Rio De Janeiro, RJ, Brazil
关键词
Loop Quantum Gravity; Barrow entropy; Immirzi parameter; AREA; FREQUENCIES; PARAMETER;
D O I
10.1016/j.physletb.2020.135602
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j(min) = 1, in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by gamma = ln3/(2 pi root 2). In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Delta parameter, and may have values other than j(min) =1. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:3
相关论文
共 21 条
[1]  
Abreu Everton M.C., 2020, EPL-EUROPHYS LETT, V130, P40005
[2]  
Abreu Everton M.C., 2019, PHYS LETT B, V798
[3]   ON THE ASYMPTOTIC-DISTRIBUTION OF QUASI-NORMAL-MODE FREQUENCIES FOR SCHWARZSCHILD BLACK-HOLES [J].
ANDERSSON, N .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (06) :L61-L67
[4]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[5]  
Ashtekar A, 2000, ADV THEOR MATH PHYS, V4
[6]  
Barrow J. D, ARXIV200409444GRQC
[7]   Logarithmic corrections to black hole entropy, from the Cardy formula [J].
Carlip, S .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (20) :4175-4186
[8]   Quasinormal modes, the area spectrum, and black hole entropy [J].
Dreyer, O .
PHYSICAL REVIEW LETTERS, 2003, 90 (08) :4-081301
[9]   Bohr's correspondence principle and the area spectrum of quantum black holes [J].
Hod, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4293-4296
[10]   Quantum gravity and Regge calculus [J].
Immirzi, G .
NUCLEAR PHYSICS B, 1997, :65-72