Fast and accurate determination of the Wigner rotation matrices in the fast multipole method

被引:21
作者
Dachsel, H [1 ]
机构
[1] Res Ctr Julich, Cent Inst Appl Math, John von Neumann Inst Comp, D-52425 Julich, Germany
关键词
D O I
10.1063/1.2194548
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the rotation based fast multipole method the accurate determination of the Wigner rotation matrices is essential. The combination of two recurrence relations and the control of the error accumulations allow a very precise determination of the Wigner rotation matrices. The recurrence formulas are simple, efficient, and numerically stable. The advantages over other recursions are documented. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 14 条
[1]  
Allen M. P., 1990, COMPUTER SIMULATION
[2]  
[Anonymous], MAPL 9 LEARN GUID
[3]   Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion [J].
Choi, CH ;
Ivanic, J ;
Gordon, MS ;
Ruedenberg, K .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (19) :8825-8831
[4]   A FAST RADIX SORT [J].
DAVIS, IJ .
COMPUTER JOURNAL, 1992, 35 (06) :636-642
[5]   PARTICLE SIMULATION OF PLASMAS [J].
DAWSON, JM .
REVIEWS OF MODERN PHYSICS, 1983, 55 (02) :403-447
[6]  
Edmonds A. R., 1957, Angular Momentum in Quantum Mechanics
[7]   Fast Fourier transform accelerated fast multipole algorithm [J].
Elliott, WD ;
Board, JA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02) :398-415
[8]  
Greengard L., 1988, RAPID EVALUATION POT
[9]  
GREENGARD L, 1985, J COMPUT PHYS, V60, P187
[10]  
MONAGAN MB, 2003, MAPLE 9 INTRO PROGRA