Geometric singular perturbation theory with real noise

被引:16
作者
Li, Ji [1 ]
Lu, Kening [2 ,3 ]
Bates, Peter W. [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[3] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
基金
美国国家科学基金会;
关键词
Random dynamical systems; Random normally hyperbolic invariant manifolds; Random stable and unstable foliations; Random singular perturbation; Boundary condition; Random inclination; TRACKING INVARIANT-MANIFOLDS; NERNST-PLANCK SYSTEMS; EXCHANGE LEMMAS; ASYMPTOTIC STABILITY; PERSISTENCE;
D O I
10.1016/j.jde.2015.06.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of families of random invariant manifolds for singularly perturbed systems of ordinary differential equations with sufficiently small real noise. We use these invariant manifolds to prove a random version of the inclination theorem or exchange lemma. Published by Elsevier Inc.
引用
收藏
页码:5137 / 5167
页数:31
相关论文
共 23 条