A CHARACTERIZATION OF GROMOV HYPERBOLICITY OF SURFACES WITH VARIABLE NEGATIVE CURVATURE

被引:50
|
作者
Portilla, Ana [1 ]
Touris, Eva [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
关键词
Gromov hyperbolicity; Riemannian surface; negatively curved Riemannian surface; RIEMANN SURFACES; HARMONIC-FUNCTIONS; ROUGH ISOMETRIES; INFINITE TYPE; MANIFOLDS; SPACES; DECOMPOSITION; INEQUALITIES; METRICS; DOMAINS;
D O I
10.5565/PUBLMAT_53109_04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that, in order to check Gromov hyperbolicity of any surface with curvature K <= -k(2) < 0, we just need to verify the Rips condition on a very small class of triangles, namely, those contained in simple closed geodesics. This result is, in fact, a new characterization of Gromov hyperbolicity for this kind of surfaces.
引用
收藏
页码:83 / 110
页数:28
相关论文
共 50 条
  • [31] Gromov hyperbolicity of Denjoy Domains
    Venancio Alvarez
    Ana Portilla
    Jose M. Rodriguez
    Eva Touris
    Geometriae Dedicata, 2006, 121 : 221 - 245
  • [32] Gromov hyperbolicity through decomposition of metric spaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Hungarica, 2004, 103 : 107 - 138
  • [33] Knot graphs and Gromov hyperbolicity
    Jabuka, Stanislav
    Liu, Beibei
    Moore, Allison H.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 811 - 834
  • [34] Geometric characterizations of Gromov hyperbolicity
    Zoltán M. Balogh
    Stephen M. Buckley
    Inventiones mathematicae, 2003, 153 : 261 - 301
  • [35] Bounds on Gromov hyperbolicity constant
    Verónica Hernández
    Domingo Pestana
    José M. Rodríguez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 321 - 342
  • [36] Knot graphs and Gromov hyperbolicity
    Stanislav Jabuka
    Beibei Liu
    Allison H. Moore
    Mathematische Zeitschrift, 2022, 301 : 811 - 834
  • [38] Gromov hyperbolicity of Denjoy domains
    Alvarez, Venancio
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    GEOMETRIAE DEDICATA, 2006, 121 (01) : 221 - 245
  • [39] The Nikolov-Andreev Metric and Gromov Hyperbolicity
    Luo, Qianghua
    Rasila, Antti
    Wang, Ye
    Zhou, Qingshan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [40] Gromov Hyperbolicity of Periodic Graphs
    Canton, Alicia
    Granados, Ana
    Pestana, Domingo
    Rodriguez, Jose M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S89 - S116