A CHARACTERIZATION OF GROMOV HYPERBOLICITY OF SURFACES WITH VARIABLE NEGATIVE CURVATURE

被引:50
|
作者
Portilla, Ana [1 ]
Touris, Eva [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
关键词
Gromov hyperbolicity; Riemannian surface; negatively curved Riemannian surface; RIEMANN SURFACES; HARMONIC-FUNCTIONS; ROUGH ISOMETRIES; INFINITE TYPE; MANIFOLDS; SPACES; DECOMPOSITION; INEQUALITIES; METRICS; DOMAINS;
D O I
10.5565/PUBLMAT_53109_04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that, in order to check Gromov hyperbolicity of any surface with curvature K <= -k(2) < 0, we just need to verify the Rips condition on a very small class of triangles, namely, those contained in simple closed geodesics. This result is, in fact, a new characterization of Gromov hyperbolicity for this kind of surfaces.
引用
收藏
页码:83 / 110
页数:28
相关论文
共 50 条
  • [21] Bounds on Gromov hyperbolicity constant
    Hernandez, Veronica
    Pestana, Domingo
    Rodriguez, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 321 - 342
  • [22] GROMOV HYPERBOLICITY OF STRONGLY PSEUDOCONVEX ALMOST COMPLEX MANIFOLDS
    Bertrand, Florian
    Gaussier, Herve
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 3901 - 3913
  • [23] Gromov hyperbolicity in strong product graphs
    Carballosa, Walter
    Casablanca, Rocio M.
    de la Cruz, Amauris
    Rodriguez, Jose M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03)
  • [24] Bounds on Gromov hyperbolicity constant in graphs
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (01): : 53 - 65
  • [25] Gromov hyperbolicity of Johnson and Kneser graphs
    Mendez, Jesus
    Reyes, Rosalio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AEQUATIONES MATHEMATICAE, 2024, 98 (03) : 661 - 686
  • [26] On the Gromov Hyperbolicity of Convex Domains in Cn
    Gaussier, Herve
    Seshadri, Harish
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (04) : 617 - 641
  • [27] Gromov hyperbolicity in Cartesian product graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (05): : 593 - 609
  • [28] Gromov hyperbolicity of periodic planar graphs
    Canton, Alicia
    Granados, Ana
    Pestana, Domingo
    Manuel Rodriguez, Jose
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (01) : 79 - 90
  • [29] Planar Riemann surfaces with uniformly distributed cusps: parabolicity and hyperbolicity
    Matsuzaki, Katsuhiko
    Rodriguez, Jose M.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) : 1097 - 1112
  • [30] Gromov hyperbolicity through decomposition of metric spaces
    Rodríguez, JM
    Tourís, E
    ACTA MATHEMATICA HUNGARICA, 2004, 103 (1-2) : 107 - 138