A CHARACTERIZATION OF GROMOV HYPERBOLICITY OF SURFACES WITH VARIABLE NEGATIVE CURVATURE

被引:50
|
作者
Portilla, Ana [1 ]
Touris, Eva [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
关键词
Gromov hyperbolicity; Riemannian surface; negatively curved Riemannian surface; RIEMANN SURFACES; HARMONIC-FUNCTIONS; ROUGH ISOMETRIES; INFINITE TYPE; MANIFOLDS; SPACES; DECOMPOSITION; INEQUALITIES; METRICS; DOMAINS;
D O I
10.5565/PUBLMAT_53109_04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that, in order to check Gromov hyperbolicity of any surface with curvature K <= -k(2) < 0, we just need to verify the Rips condition on a very small class of triangles, namely, those contained in simple closed geodesics. This result is, in fact, a new characterization of Gromov hyperbolicity for this kind of surfaces.
引用
收藏
页码:83 / 110
页数:28
相关论文
共 50 条
  • [1] A REAL VARIABLE CHARACTERIZATION OF GROMOV HYPERBOLICITY OF FLUTE SURFACES
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    OSAKA JOURNAL OF MATHEMATICS, 2011, 48 (01) : 179 - 207
  • [2] The topology of balls in Riemannian surfaces and Gromov hyperbolicity
    Gonzalo, Jesus
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (3-4) : 741 - 760
  • [3] Twists and Gromov Hyperbolicity of Riemann Surfaces
    Matsuzaki, Katsuhiko
    Rodriguez, Jose M.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (01) : 29 - 44
  • [4] A VERY SIMPLE CHARACTERIZATION OF GROMOV HYPERBOLICITY FOR A SPECIAL KIND OF DENJOY DOMAINS
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 565 - 583
  • [5] Twists and Gromov hyperbolicity of riemann surfaces
    Katsuhiko Matsuzaki
    José M. Rodríguez
    Acta Mathematica Sinica, English Series, 2011, 27 : 29 - 44
  • [6] Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces
    Touris, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 865 - 881
  • [7] A new characterization of Gromov hyperbolicity for negatively curved surfaces
    Rodriguez, Jose M.
    Touris, Eva
    PUBLICACIONS MATEMATIQUES, 2006, 50 (02) : 249 - 278
  • [8] Gromov Hyperbolicity of Riemann Surfaces
    José M.RODRíGUEZ
    EVa TOURIS
    Acta Mathematica Sinica(English Series), 2007, 23 (02) : 209 - 228
  • [9] Gromov Hyperbolicity of Riemann Surfaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Sinica, English Series, 2007, 23 : 209 - 228
  • [10] Gromov hyperbolicity of Riemann surfaces
    Rodriguez, Jose M.
    Touris, Eva
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 209 - 228